Classwork 7 – Complex Oscillations: Answers

(a) (i) If $\tilde{\omega} = \omega \in \mathbb{R}$, then $\tilde{x}(t) = Ae^{i\omega t} = A(\cos \omega t + \sin \omega t)$ so $x(t) = \operatorname{Re}(\tilde{x}(t)) = A\cos \omega t$.

(ii) If $\tilde{\omega} = i\gamma$, $\gamma \in \mathbb{R}$, then $\tilde{x}(t) = Ae^{i(i\gamma)t} = Ae^{-\gamma t}$, so $x(t) = \operatorname{Re}(\tilde{x}(t)) = Ae^{-\gamma t}$ which represents exponential decay if γ is positive and exponential growth if γ is negative.

- (b) We note that $\tilde{x}(t) = \tilde{A}e^{i\omega t} = Ae^{i\theta}e^{i\omega t} = Ae^{i(\omega t+\theta)}$.
 - (i) For $\theta = -\frac{\pi}{2}$, we have $x(t) = \operatorname{Re}(\tilde{x}(t)) = A\cos(\omega t \pi/2) = A\sin\omega t$. The latter result also follows from noting that $e^{-i\pi/2} = -i$. (ii) For $\theta = \pm \pi$, we have $x(t) = \operatorname{Re}(\tilde{x}(t)) = A\cos(\omega t \pm \pi) = -A\cos\omega t$. The latter result also follows from noting that $e^{\pm i\pi} = -1$.

(c) If $\tilde{\omega} = \omega + i\gamma$, $\omega, \gamma \in \mathbb{R}$, then $\tilde{x}(t) = Ae^{i\tilde{\omega}t} = Ae^{i\omega t - \gamma t} = Ae^{-\gamma t}e^{i\omega t}$, so $x(t) = Ae^{-\gamma t}\cos\omega t$. (i) $x(0) = Ae^0\cos 0 = A$.

(ii) The oscillation period T is defined by $\cos \omega t = \cos(\omega(t+T)) = \cos(\omega t + \omega T)$, and hence $\omega T = 2\pi$ yielding $T = 2\pi / \omega$.

(iii) By definition, the amplitude of the oscillation is given by $Ae^{-\gamma t}$. The initial amplitude (at t = 0) is A, so the equation to determine $t_{\frac{1}{2}}$ is: $Ae^{-\gamma t_{\frac{1}{2}}} = \frac{1}{2}A$. Taking the natural logarithm, we find $-\gamma t_{\frac{1}{2}} = \log_e 1 - \log_e 2 = -\log_e 2$, so $t_{\frac{1}{2}} = \frac{\log_e 2}{\gamma}$.

(d) (i) Inserting the trial solution $\tilde{x}(t) = \tilde{A}e^{i\omega_0 t}$ into the complex equation $m\frac{d^2\tilde{x}}{d\tilde{x}^2} = -k\tilde{x}$ yields $m(i\omega_0)^2 \tilde{x} = -k\tilde{x}$, that is, $m\omega_0^2 = k$ so the natural angular frequency $\omega_0 = \sqrt{k/m}$. This makes sense qualitatively speaking: The larger the spring constant, the larger the frequency and, the larger the mass, the lesser the frequency. Also note that since $\left[\frac{k}{m}\right] = \frac{kgs^{-2}}{kg} = s^{-2}$, dimensional considerations alone reveals that $\omega_0 = const \times \sqrt{k/m}$ since $[\omega_0] = s^{-1}$.

(ii) The (complex) speed
$$\tilde{v}(t) = \frac{d\tilde{x}(t)}{dt} = i\omega_0 \tilde{x}(t) = i\omega_0 \tilde{A}e^{i\omega_0 t}$$
.

(e) We have that $\tilde{x}(t) = \tilde{A}e^{i\omega_0 t}$ (with $\omega_0 = \sqrt{k/m}$) and $\tilde{v}(t) = \frac{d\tilde{x}}{dt} = i\omega_0 \tilde{A}e^{i\omega_0 t}$.

(i) If $\tilde{A} = A \in \mathbb{R}$, then the (real) displacement $x(t) = \operatorname{Re}(\tilde{x}(t)) = \operatorname{Re}(Ae^{i\omega_0 t}) = A\cos\omega_0 t$ and the (real) speed $v(t) = \operatorname{Re}(\tilde{v}(t)) = \operatorname{Re}(i\omega_0 Ae^{i\omega_0 t}) = -\omega_0 A\sin\omega_0 t$.

(ii) If $\tilde{A} = Ae^{i\pi/2} = iA$, then the displacement $x(t) = \operatorname{Re}(\tilde{x}(t)) = \operatorname{Re}(iAe^{i\omega_0 t}) = -A\sin\omega_0 t$ and the speed $v(t) = \operatorname{Re}(\tilde{v}(t)) = \operatorname{Re}(i\omega_0 iAe^{i\omega_0 t}) = -\omega_0 A\cos\omega_0 t$.

(i) The associated complex differential equation is $\frac{d\tilde{x}}{dt} + a\tilde{x} = Be^{i\omega t}$. (f) (ii) Substituting the trial solution $\tilde{x}(t) = \tilde{A}e^{i\omega t}$ into $\frac{d\tilde{x}}{dt} + a\tilde{x} = Be^{i\omega t}$ yields $i\omega \tilde{A}e^{i\omega t} + a\tilde{A}e^{i\omega t} = Be^{i\omega t}$. Dividing by $e^{i\omega t}$ we have $i\omega \tilde{A} + a\tilde{A} = B$ with the solution $\tilde{A} = \frac{B}{a + i\omega}$. Substituting this back into the trial solution we find $\tilde{x}(t) = \frac{B}{a + i\omega}e^{i\omega t}$. In order to facilitate taking the real part, we multiply and divide by $a-i\omega$: $\tilde{x}(t) = \frac{B(a-i\omega)}{a^2 + \omega^2} e^{i\omega t} = \frac{Be^{-i\phi}}{\sqrt{a^2 + \omega^2}} e^{i\omega t} = \frac{B}{\sqrt{a^2 + \omega^2}} e^{i(\omega t - \phi)} \text{ where } e^{-i\phi} \equiv \frac{a - i\omega}{\sqrt{a^2 + \omega^2}} \text{ and}$ (since $a, \omega > 0$) tan $\phi = \omega / a$. Hence we find that the (real) displacement $x(t) = \operatorname{Re}(\tilde{x}(t)) = \frac{B}{\sqrt{a^2 + \omega^2}} \cos(\omega t - \phi)$ where $\tan \phi = \omega / a$. (iii) When $\omega \ll a$, then $a^2 + \omega^2 \approx a^2$ and $\tan \phi \approx 0 \Rightarrow \phi \approx 0$, so $x(t) \approx \frac{B}{a} \cos \omega t$. (iv) When $\omega \gg a$, then $a^2 + \omega^2 \approx \omega^2$ and $\tan \phi \to \infty \Longrightarrow \phi \to \frac{\pi}{2}$, so $x(t) \approx \frac{B}{\omega} \cos(\omega t - \pi/2) = \frac{B}{\omega} \sin \omega t$. (v) When $\omega = a$, then $a^2 + \omega^2 = 2a^2$ and $\tan \phi = 1 \Rightarrow \phi = \frac{\pi}{4}$, so $x(t) = \frac{B}{a\sqrt{2}} \cos(\omega t - \pi/4)$. (vi) The amplitude is given by $\frac{B}{\sqrt{a^2 + a^2}}$. For fixed *a*, the amplitude decreases with increasing frequency ω . The amplitude of the oscillations is B/a at $\omega = 0$, $B/a\sqrt{2}$ at $\omega = a$, B/ω for $\omega \gg a$, and tends to zero (like $1/\omega$) as $\omega \to \infty$. (i) $\omega_0 = \sqrt{k/m} = \sqrt{100/4} \text{ rads}^{-1} = 5 \text{ rads}^{-1}$;

(ii)
$$T = \frac{2\pi}{\omega_0} = \frac{2\pi}{5}s = 1.26s$$

(h)

(iii) Since $A \in \mathbb{R}$, the displacement $x(t) = A \cos \omega_0 t$ and the speed $v(t) = -\omega_0 A \sin \omega_0 t$.

At t = 0, x(0) = 0.1 m, v = 0 m/s. At t = 0.2 s, $x = 0.1 \cos(1.0) = 0.054$ m, $v = -0.5 \sin(1.0) = -0.421$ m/s. At t = 0.4 s, $x = 0.1 \cos(2.0) = -0.042$ m, $v = -0.5 \sin(2.0) = -0.455$ m/s.

