Classwork 6 - Transforming Areas \& Volumes: Answers

(a) $\quad \mathbf{r}_{2}=\mathbf{T r}_{1} \Leftrightarrow\binom{x_{2}}{y_{2}}=\left(\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right)\binom{x_{1}}{y_{1}}=\binom{a_{1} x_{1}+b_{1} y_{1}}{a_{2} x_{1}+b_{2} y_{1}}$, that is, $x_{2}=a_{1} x_{1}+b_{1} y_{1} ; y_{2}=a_{2} x_{1}+b_{2} y_{1}$.

The origin $x_{1}=y_{1}=0$ is transformed into itself, $x_{2}=y_{2}=0$.
(b) Just by inspection of the Figure, we find $\mathbf{r}_{\mathrm{A}}=\binom{u}{v}, \mathbf{r}_{\mathrm{B}}=\binom{u+s}{v}, \mathbf{r}_{\mathrm{C}}=\binom{u+s}{v+s}, \mathbf{r}_{\mathrm{D}}=\binom{u}{v+s}$. Similarly, by inspection, $\overrightarrow{A B}=\overrightarrow{D C}=s \mathbf{i}, \overrightarrow{A D}=\overrightarrow{B C}=s \mathbf{j}$.
(c) Consider a line $\mathbf{r}=\mathbf{r}_{0}+\lambda \mathbf{d}$. Since the transformation is linear, we find that $\mathbf{T r}=\mathbf{T}\left(\mathbf{r}_{0}+\lambda \mathbf{d}\right)=\mathbf{T r} \mathbf{r}_{0}+\mathbf{T}(\lambda \mathbf{d})=\mathbf{T r} \mathbf{r}_{0}+\lambda(\mathbf{T d})$ which indeed is a straight line passing through the point $\mathbf{T r}_{0}$ and direction vector $\mathbf{T d}$.
(d) We find that the corners of the square transform into
$\mathbf{r}_{E}=\mathbf{T r}_{A}=\left(\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right)\binom{u}{v}\binom{a_{1} u+b_{1} v}{a_{2} u+b_{2} v}, \quad \mathbf{r}_{F}=\mathbf{T r}_{B}=\left(\begin{array}{cc}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right)\binom{u+s}{v}\binom{a_{1}(u+s)+b_{1} v}{a_{2}(u+s)+b_{2} v}$,
$\mathbf{r}_{G}=\mathbf{T r}_{C}=\left(\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right)\binom{u+s}{v+s}\binom{a_{1}(u+s)+b_{1}(v+s)}{a_{2}(u+s)+b_{2}(v+s)}$, and
$\mathbf{r}_{H}=\mathbf{T r}_{D}=\left(\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right)\binom{u}{v+s}\binom{a_{1} u+b_{1}(v+s)}{a_{2} u+b_{2}(v+s)}$, respectively.
Using $\overrightarrow{E F}=\mathbf{r}_{F}-\mathbf{r}_{E}, \overrightarrow{H G}=\mathbf{r}_{G}-\mathbf{r}_{H}, \overrightarrow{E H}=\mathbf{r}_{H}-\mathbf{r}_{E}, \overrightarrow{F G}=\mathbf{r}_{G}-\mathbf{r}_{F}$, , we find $\overrightarrow{E F}=\overrightarrow{H G}=\binom{a_{1} s}{a_{2} s}, \quad \overrightarrow{E H}=\overrightarrow{F G}=\binom{b_{1} s}{b_{2} s}$.
(e) We evaluate the results above using $\mathbf{T}=\left(\begin{array}{ll}3 & 2 \\ 2 & 4\end{array}\right), \mathbf{r}_{A}=\binom{-1}{-1}$ and $s=3$, yielding $\mathbf{r}_{E}=\binom{-5}{-6}, \mathbf{r}_{F}=\binom{4}{0}, \mathbf{r}_{G}=\binom{10}{12}, \mathbf{r}_{H}=\binom{1}{6}, \overrightarrow{E F}=\overrightarrow{H G}=\binom{9}{6} ; \overrightarrow{E H}=\overrightarrow{F G}=\binom{6}{12}$. See next pg.
(f) (i) Since $\overrightarrow{E F}=a_{1} s \mathbf{i}+a_{2} s \mathbf{j}$ and $\overrightarrow{E H}=b_{1} s \mathbf{i}+b_{2} s \mathbf{j}$, the area of the parallelogram is

$$
|\overrightarrow{E F} \times \overrightarrow{E H}|=\left\|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} s & a_{2} s & 0 \\
b_{1} s & b_{2} s & 0
\end{array}\right\|=\left|a_{1} s b_{2} s-b_{1} s a_{2} s\right|=s^{2}\left|\left(a_{1} b_{2}-a_{2} b_{1}\right)\right|=s^{2}|\operatorname{det} \mathbf{T}| .
$$

Hence, since the original area was s^{2}, the area scale factor is multiplied by $|\operatorname{det} \mathbf{T}|$. (Note that, in the equation for the area, the outer bars signify the absolute value while the inner bars signify the determinant.) (ii) Inserting the values, we find $|\operatorname{det} T|=|12-4|=8$.
(g) Yes, because any shape can be considered to be an assembly of small squares.
(h) (i) The transformations of the natural basis vectors $f\left(\mathbf{e}_{j}\right)$ are the column vectors \mathbf{a}_{j} of the matrix defining the transformation:

$$
\mathbf{a}_{1}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}, \quad \mathbf{a}_{2}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}, \quad \mathbf{a}_{3}=c_{1} \mathbf{i}+c_{2} \mathbf{j}+c_{3} \mathbf{k} .
$$

(ii) The volume is $\left|\mathbf{a}_{1} \bullet\left(\mathbf{a}_{2} \times \mathbf{a}_{3}\right)\right|=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array} \|=|\operatorname{det} \mathbf{T}|\right.$ as before.
(iii) Yes, because any solid can be considered to be an assembly of small cubes.
(e) Sketch of square $A B C D$ and its transform, the parallelogram EFGH:

