Classwork 6 – Transforming Areas & Volumes: Answers

- (a) $\mathbf{r}_2 = \mathbf{T}\mathbf{r}_1 \Leftrightarrow \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} a_1 x_1 + b_1 y_1 \\ a_2 x_1 + b_2 y_1 \end{pmatrix}$, that is, $x_2 = a_1 x_1 + b_1 y_1$; $y_2 = a_2 x_1 + b_2 y_1$. The origin $x_1 = y_1 = 0$ is transformed into itself, $x_2 = y_2 = 0$.
- (b) Just by inspection of the Figure, we find $\mathbf{r}_{A} = \begin{pmatrix} u \\ v \end{pmatrix}, \mathbf{r}_{B} = \begin{pmatrix} u+s \\ v \end{pmatrix}, \mathbf{r}_{C} = \begin{pmatrix} u+s \\ v+s \end{pmatrix}, \mathbf{r}_{D} = \begin{pmatrix} u \\ v+s \end{pmatrix}$. Similarly, by inspection, $\overrightarrow{AB} = \overrightarrow{DC} = s\mathbf{i}, \overrightarrow{AD} = \overrightarrow{BC} = s\mathbf{j}$.
- (c) Consider a line $\mathbf{r} = \mathbf{r}_0 + \lambda \mathbf{d}$. Since the transformation is linear, we find that $\mathbf{Tr} = \mathbf{T}(\mathbf{r}_0 + \lambda \mathbf{d}) = \mathbf{Tr}_0 + \mathbf{T}(\lambda \mathbf{d}) = \mathbf{Tr}_0 + \lambda(\mathbf{Td})$ which indeed is a straight line passing through the point \mathbf{Tr}_0 and direction vector \mathbf{Td} .
- (d) We find that the corners of the square transform into $\mathbf{r}_{E} = \mathbf{T}\mathbf{r}_{A} = \begin{pmatrix} a_{1} & b_{1} \\ a_{2} & b_{2} \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} \begin{pmatrix} a_{1}u + b_{1}v \\ a_{2}u + b_{2}v \end{pmatrix}, \quad \mathbf{r}_{F} = \mathbf{T}\mathbf{r}_{B} = \begin{pmatrix} a_{1} & b_{1} \\ a_{2} & b_{2} \end{pmatrix} \begin{pmatrix} u + s \\ v \end{pmatrix} \begin{pmatrix} a_{1}(u + s) + b_{1}v \\ a_{2}(u + s) + b_{2}v \end{pmatrix},$ $\mathbf{r}_{G} = \mathbf{T}\mathbf{r}_{C} = \begin{pmatrix} a_{1} & b_{1} \\ a_{2} & b_{2} \end{pmatrix} \begin{pmatrix} u + s \\ v + s \end{pmatrix} \begin{pmatrix} a_{1}(u + s) + b_{1}(v + s) \\ a_{2}(u + s) + b_{2}(v + s) \end{pmatrix}, \text{ and}$ $\mathbf{r}_{H} = \mathbf{T}\mathbf{r}_{D} = \begin{pmatrix} a_{1} & b_{1} \\ a_{2} & b_{2} \end{pmatrix} \begin{pmatrix} u \\ v + s \end{pmatrix} \begin{pmatrix} a_{1}u + b_{1}(v + s) \\ a_{2}u + b_{2}(v + s) \end{pmatrix}, \text{ respectively.}$ Using $\overrightarrow{EF} = \mathbf{r}_{F} - \mathbf{r}_{E}, \overrightarrow{HG} = \mathbf{r}_{G} - \mathbf{r}_{H}, \overrightarrow{EH} = \mathbf{r}_{H} - \mathbf{r}_{E}, \overrightarrow{FG} = \mathbf{r}_{G} - \mathbf{r}_{F}, \text{ we find}$ $\overrightarrow{EF} = \overrightarrow{HG} = \begin{pmatrix} a_{1}s \\ a_{2}s \end{pmatrix}, \quad \overrightarrow{EH} = \overrightarrow{FG} = \begin{pmatrix} b_{1}s \\ b_{2}s \end{pmatrix}.$
- (e) We evaluate the results above using $\mathbf{T} = \begin{pmatrix} 3 & 2 \\ 2 & 4 \end{pmatrix}, \mathbf{r}_A = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$ and s = 3, yielding $\mathbf{r}_E = \begin{pmatrix} -5 \\ -6 \end{pmatrix}, \mathbf{r}_F = \begin{pmatrix} 4 \\ 0 \end{pmatrix}, \mathbf{r}_G = \begin{pmatrix} 10 \\ 12 \end{pmatrix}, \mathbf{r}_H = \begin{pmatrix} 1 \\ 6 \end{pmatrix}, \overline{EF} = \overline{HG} = \begin{pmatrix} 9 \\ 6 \end{pmatrix}; \overline{EH} = \overline{FG} = \begin{pmatrix} 6 \\ 12 \end{pmatrix}$. See next pg.

(f) (i) Since $\overrightarrow{EF} = a_1 s \mathbf{i} + a_2 s \mathbf{j}$ and $\overrightarrow{EH} = b_1 s \mathbf{i} + b_2 s \mathbf{j}$, the area of the parallelogram is

$$\left|\overrightarrow{EF}\times\overrightarrow{EH}\right| = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1s & a_2s & 0 \\ b_1s & b_2s & 0 \end{vmatrix} = \left|a_1sb_2s - b_1sa_2s\right| = s^2\left|(a_1b_2 - a_2b_1)\right| = s^2\left|\det\mathbf{T}\right|.$$

Hence, since the original area was s^2 , the area scale factor is multiplied by $|\det \mathbf{T}|$. (Note that, in the equation for the area, the outer bars signify the absolute value while the inner bars signify the determinant.) (ii) Inserting the values, we find $|\det \mathbf{T}| = |12 - 4| = 8$.

(g) Yes, because any shape can be considered to be an assembly of small squares.

(h) (i) The transformations of the natural basis vectors $f(\mathbf{e}_j)$ are the column vectors \mathbf{a}_j of the matrix defining the transformation:

(ii) The volume is
$$|\mathbf{a}_1 \cdot (\mathbf{a}_2 \times \mathbf{a}_3)| = \begin{vmatrix} a_1 & b_2 \mathbf{j} + b_3 \mathbf{k}, & \mathbf{a}_3 = c_1 \mathbf{i} + c_2 \mathbf{j} + c_3 \mathbf{k}. \end{vmatrix}$$

 $|\mathbf{a}_1 & b_1 & c_1 \\|a_2 & b_2 & c_2 \\|a_3 & b_3 & c_3 \end{vmatrix} = |\det \mathbf{T}| \text{ as before.}$

- (iii) Yes, because any solid can be considered to be an assembly of small cubes.
- (e) Sketch of square ABCD and its transform, the parallelogram EFGH:

