Classwork 6 – Transforming Areas and Volumes

First we consider a transformation of areas, that is, a transformation from \mathbb{R}^2 to \mathbb{R}^2 .

- (a) The matrix $\mathbf{T} = \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix}$ transforms a point defined by the position vector $\mathbf{r}_1 = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$ into a new point $\mathbf{r}_2 = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$ defined by $\mathbf{r}_2 = \mathbf{T}\mathbf{r}_1$. Write down equations for x_2 and y_2 in terms of x_1 and y_1 , and the elements of **T**. How is the origin transformed?
- (b) *ABCD* is a square of side *s* as shown in the Fig. with the lower left-hand corner *A* at position $\mathbf{r}_A = \begin{pmatrix} u \\ v \end{pmatrix}$. Write down expressions for the vectors $\mathbf{r}_B, \mathbf{r}_C$, and \mathbf{r}_D defining the other three corners *B*, *C*, and *D*. Find the vectors $\overrightarrow{AB}, \overrightarrow{DC}, \overrightarrow{AD}, \overrightarrow{BC}$.

- (c) The vector equation of a straight line through a point \mathbf{r}_0 and direction \mathbf{d} is $\mathbf{r} = \mathbf{r}_0 + \lambda \mathbf{d}$. Convince yourself that \mathbf{T} transforms one straight line into another straight line.
- (d) It follows from (c) that **T** transforms *ABCD* into a quadrilateral *EFGH*. Write down the position vectors $\mathbf{r}_E, \mathbf{r}_F, \mathbf{r}_G, \mathbf{r}_H$ defining all four corners of *EFGH*, and hence find the vectors $\overrightarrow{EF}, \overrightarrow{HG}, \overrightarrow{EH}, \overrightarrow{FG}$. You should find that $\overrightarrow{EF} = \overrightarrow{HG}$ and $\overrightarrow{EH} = \overrightarrow{FG}$, which implies that opposite sides of the quadrilateral are equal in length and direction, and hence that the quadrilateral is, in fact, a parallelogram.
- (e) If $\mathbf{T} = \begin{pmatrix} 3 & 2 \\ 2 & 4 \end{pmatrix}$, $\mathbf{r}_{A} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$, and s = 3, find the corners of the parallelogram and the vectors $\overrightarrow{EF}, \overrightarrow{HG}, \overrightarrow{EH}, \overrightarrow{FG}$. Make a rough sketch of the square *ABCD* and its transform *EFGH*.
- (f) The area of a parallelogram is $|\mathbf{A} \times \mathbf{B}|$ where **A** and **B** are the two vectors defining the two adjacent sides. The parallelogram lies in the *x*-*y* plane, that is, $A_z = B_z = 0$, and hence the area is $|A_x B_y A_y B_x|$.

(i) Find the area of *EFGH*, and show that the area scale factor for the transformation **T**, i.e., the factor by which the area of the original square is multiplied, is $|\det \mathbf{T}| = |a_1b_2 - a_2b_1|$.

- (ii) Put in the numbers from the previous question.
- (g) Does the same area scale factor apply to other 2D shapes transformed by T?

Now we consider a transformation of volumes, that is, a transformation from \mathbb{R}^3 to \mathbb{R}^3 .

(h) These ideas above can be extended to 3D (indeed to any dimension). A unit cube has edges of unit length parallel to the coordinate axes and one corner is at the origin. The

linear transformation $\mathbf{T} = \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix}$ transforms the cube into a parallelepiped.

(i) Write down the vectors representing the three edges of the parallelepiped that intersect at the origin.

(ii) By using the formula from Fact Sheet 9 for the volume of a parallelepiped, find the volume scale factor for the transformation applied to the cube.

(iii) Does the same volume scale factor apply to other three-dimensional shapes transformed by T?

The examples above illustrates the following general theorems:

Theorem 1: A linear function f from \mathbb{R}^n to \mathbb{R}^n with matrix **A** multiplies volumes by the factor $|\det \mathbf{A}|$.

Theorem 2: Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a linear function. Then the associated matrix

$$\mathbf{A} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \equiv (\mathbf{a}_1, \mathbf{a}_2, \dots \mathbf{a}_n) \text{ where the } j\text{th column } \mathbf{a}_j = f(\mathbf{e}_j), j = 1, 2, \dots n \text{ is the}$$

transformation of the *j*th natural basis vector \mathbf{e}_{i} .

Theorem 3: Let $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ be *n* vectors in \mathbb{R}^n . Then the volume of the parallelepiped with edges $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ is $|\det(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n)|$.