Classwork 6 - Transforming Areas and Volumes

First we consider a transformation of areas, that is, a transformation from \mathbb{R}^{2} to \mathbb{R}^{2}.
(a) The matrix $\mathbf{T}=\left(\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right)$ transforms a point defined by the position vector $\mathbf{r}_{1}=\binom{x_{1}}{y_{1}}$ into a new point $\mathbf{r}_{2}=\binom{x_{2}}{y_{2}}$ defined by $\mathbf{r}_{2}=\mathbf{T r}_{1}$. Write down equations for x_{2} and y_{2} in terms of x_{1} and y_{1}, and the elements of \mathbf{T}. How is the origin transformed?
(b) $\quad A B C D$ is a square of side s as shown in the Fig. with the lower left-hand corner A at position $\mathbf{r}_{A}=\binom{u}{v}$. Write down expressions for the vectors $\mathbf{r}_{B}, \mathbf{r}_{C}$, and \mathbf{r}_{D} defining the other three corners B, C, and D.
Find the vectors $\overrightarrow{A B}, \overrightarrow{D C}, \overrightarrow{A D}, \overrightarrow{B C}$.

(c) The vector equation of a straight line through a point \mathbf{r}_{0} and direction \mathbf{d} is $\mathbf{r}=\mathbf{r}_{0}+\lambda \mathbf{d}$. Convince yourself that \mathbf{T} transforms one straight line into another straight line.
(d) It follows from (c) that \mathbf{T} transforms $A B C D$ into a quadrilateral $E F G H$. Write down the position vectors $\mathbf{r}_{E}, \mathbf{r}_{F}, \mathbf{r}_{G}, \mathbf{r}_{H}$ defining all four corners of $E F G H$, and hence find the vectors $\overrightarrow{E F}, \overrightarrow{H G}, \overrightarrow{E H}, \overrightarrow{F G}$. You should find that $\overrightarrow{E F}=\overrightarrow{H G}$ and $\overrightarrow{E H}=\overrightarrow{F G}$, which implies that opposite sides of the quadrilateral are equal in length and direction, and hence that the quadrilateral is, in fact, a parallelogram.
(e) If $\mathbf{T}=\left(\begin{array}{ll}3 & 2 \\ 2 & 4\end{array}\right), \mathbf{r}_{\mathrm{A}}=\binom{-1}{-1}$, and $s=3$, find the corners of the parallelogram and the vectors $\overrightarrow{E F}, \overrightarrow{H G}, \overrightarrow{E H}, \overrightarrow{F G}$. Make a rough sketch of the square $A B C D$ and its transform $E F G H$.
(f) The area of a parallelogram is $|\mathbf{A} \times \mathbf{B}|$ where \mathbf{A} and \mathbf{B} are the two vectors defining the two adjacent sides. The parallelogram lies in the $x-y$ plane, that is, $A_{z}=B_{z}=0$, and hence the area is $\left|A_{x} B_{y}-A_{y} B_{x}\right|$.
(i) Find the area of $E F G H$, and show that the area scale factor for the transformation \mathbf{T}, i.e, the factor by which the area of the original square is multiplied, is $|\operatorname{det} \mathbf{T}|=\left|a_{1} b_{2}-a_{2} b_{1}\right|$.
(ii) Put in the numbers from the previous question.
(g) Does the same area scale factor apply to other 2D shapes transformed by \mathbf{T} ?
P.T.O.

Now we consider a transformation of volumes, that is, a transformation from \mathbb{R}^{3} to \mathbb{R}^{3}.
(h) These ideas above can be extended to 3D (indeed to any dimension). A unit cube has edges of unit length parallel to the coordinate axes and one corner is at the origin. The linear transformation $\mathbf{T}=\left(\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right)$ transforms the cube into a parallelepiped.
(i) Write down the vectors representing the three edges of the parallelepiped that intersect at the origin.
(ii) By using the formula from Fact Sheet 9 for the volume of a parallelepiped, find the volume scale factor for the transformation applied to the cube.
(iii) Does the same volume scale factor apply to other three-dimensional shapes transformed by \mathbf{T} ?

The examples above illustrates the following general theorems:

Theorem 1: A linear function f from \mathbb{R}^{n} to \mathbb{R}^{n} with matrix \mathbf{A} multiplies volumes by the factor $|\operatorname{det} \mathbf{A}|$.

Theorem 2: Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear function. Then the associated matrix
$\mathbf{A}=\left(\begin{array}{ccc}a_{11} & \ldots & a_{1 n} \\ \vdots & \ddots & \vdots \\ a_{n 1} & \cdots & a_{n n}\end{array}\right) \equiv\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots \mathbf{a}_{n}\right)$ where the j th column $\mathbf{a}_{j}=f\left(\mathbf{e}_{j}\right), j=1,2, \ldots n$ is the transformation of the j th natural basis vector \mathbf{e}_{j}.

Theorem 3: Let $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ be n vectors in \mathbb{R}^{n}. Then the volume of the parallelepiped with edges $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ is $\left|\operatorname{det}\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right)\right|$.

