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Classwork 5 – Discover the Orthogonal Matrix Answers 

(a) (i) The magnitude of u  is the root of the sum of the squares of the components, that is, 
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(c)  We find that  using 

the conditions in (a). 
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   The conditions for this to be true are 2 2 2 2
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O
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which are exactly the same as the conditions on the elements of  in part (c). 
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 We have show that, if  and =q Ap =q p  then  is an orthogonal matrix. A

 (ii) Since ( )t
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(e) ( ) ( )1 2 1 2 1 2 1 2 1 2
tt t t t= = = =q q q q Ap Ap p A Ap p A A pi t , using the result of part (d)(ii). 
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         Therefore, 1 2 1 2=q q p pi i  if and only if t =A A I . 
         We have shown that if  and , 1, 2i i i= =q Ap 1 2 1 2=q q p pi i  then  is an orthogonal matrix. A

(f)     Yes. The column vectors are normalised since 2 2cos sin 1θ θ+ =
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rotation of  of the plane about the origin. 
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 which represents a reflection 

in the x-axis (y y→−  followed by a 53.13° clockwise rotation.    
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We find 2 2 2 2 2 2
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that is, that magnitude of all three vectors is 74 .   

We evaluate the dot-product: 
1

1 1
1 ,

1

65 / 5 287 / 5ˆˆ 0.6 cos
74 74

θ− +
= = = = = s t

s t s ts t
s t
i ii  which 

yields an angle between  . Similarly, we find that 1 and s t
1, 53.13θ =s t

2

2 2
2 ,

2

215 / 5 7 /
74

5 0.5622 cˆˆ os
74

θ−

55.79=

= = = = s t
s t s ts t
s t
i ii =  which corresponds to an angle 

between of . 2 and s t
2,θs t

Relative to the positive x-axis, the vector s lies at +125.54° (anti-clockwise), the vector t1 
lies at +72.41° (anti-clockwise), and the vector t2 lies at +181.33° (anti-clockwise) or 

 (clockwise). The latter can be obtained by reflection of s in the x-axis to produce 

 followed by a 53.13° clockwise rotation. Please draw the position vectors in a 

diagram yourself and I will then save part of a tree by not having to copy another page ☺! 
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