Classwork 5 - Discover the Orthogonal Matrix

Definition: A unit vector $\hat{\mathbf{a}} \in \mathbb{R}^{n},|\hat{\mathbf{a}}|=1$ is called a normalised vector. Two vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{n}$ that are perpendicular to each other, $\mathbf{a} \cdot \mathbf{b}=0$, are called orthogonal, and two unit vectors $\hat{\mathbf{a}}, \hat{\mathbf{b}} \in \mathbb{R}^{n}$ that are perpendicular to each other, $\hat{\mathbf{a}} \cdot \hat{\mathbf{b}}=0$, are called orthonormal.
This present classwork, leads you to the definition of an orthogonal matrix. Although the questions relate to two-dimensional vectors and 2×2 matrices, the results are valid in \mathbb{R}^{n}.
(a) (i) Show that the vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{2}$ represented by the matrices $\mathbf{u}=\binom{u_{x}}{u_{y}}$ and $\mathbf{v}=\binom{v_{x}}{v_{y}}$ are orthonormal if $u_{x}^{2}+u_{y}^{2}=v_{x}^{2}+v_{y}^{2}=1$ and $u_{x} v_{x}+u_{y} v_{y}=0$.
(ii) Show that these conditions can be expressed in the matrix form $\mathbf{u}^{t} \mathbf{u}=\mathbf{v}^{t} \mathbf{v}=1$ and $\mathbf{u}^{t} \mathbf{v}=\mathbf{v}^{t} \mathbf{u}=0$ where \mathbf{A}^{t} denotes the transpose of the matrix \mathbf{A} (see page 3 on FS7).
(b) Find the unit vector $\hat{\mathbf{a}}$ in the direction of $\mathbf{a}=\binom{3}{-4}$, and find two other unit vectors $\hat{\mathbf{b}}_{1}, \hat{\mathbf{b}}_{2}$ that are orthonormal to $\hat{\mathbf{a}}$.
(c) Consider the 2×2 matrix \mathbf{O} made up of the two orthonormal vectors \mathbf{u}, \mathbf{v} from part (a), that is, $\mathbf{O}=\left(\begin{array}{ll}u_{x} & v_{x} \\ u_{y} & v_{y}\end{array}\right)$. Show that $\mathbf{O}^{t} \mathbf{O}=\mathbf{I}$, where \mathbf{I} is the identity matrix $\mathbf{I}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.

A matrix \mathbf{O} satisfying $\mathbf{O}^{t} \mathbf{O}=\mathbf{I}$ is called an orthogonal matrix.
(d) We will now discover some additional properties of orthogonal matrices.
(i) Consider two vectors $\mathbf{p}=\binom{p_{x}}{p_{y}}$ and $\mathbf{q}=\binom{q_{x}}{q_{y}}$ with $\mathbf{q}=\mathbf{A p}$ where $\mathbf{A}=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$. If the magnitudes of \mathbf{p} and \mathbf{q} are identical, what conditions are imposed on the elements of \mathbf{A} ?
(ii) Which of the following statements is correct: (1) $\mathbf{q}^{t}=\mathbf{A}^{t} \mathbf{p}^{t}$ or (2) $\mathbf{q}^{t}=\mathbf{p}^{t} \mathbf{A}^{t}$?
(e) Consider two vectors $\mathbf{p}_{1}, \mathbf{p}_{2} \in \mathbb{R}^{2}$ which are transformed by the matrix \mathbf{A} into $\mathbf{q}_{1}, \mathbf{q}_{2}$, that is, $\mathbf{q}_{1}=\mathbf{A} \mathbf{p}_{1}$ and $\mathbf{q}_{2}=\mathbf{A} \mathbf{p}_{2}$, respectively. If the transformation \mathbf{A} does not change the scalar product, that is, $\mathbf{p}_{1} \cdot \mathbf{p}_{2}=\mathbf{q}_{1} \cdot \mathbf{q}_{2}$ or, in matrix form, $\mathbf{p}_{1}^{t} \mathbf{p}_{2}=\mathbf{q}_{1}^{t} \mathbf{q}_{2}$, show that $\mathbf{A}^{t} \mathbf{A}=\mathbf{I}$ in other words that \mathbf{A} is an orthogonal matrix.
The situation in part (d) is the special case where $\mathbf{p}_{2}=\mathbf{p}_{1}$ and $\mathbf{q}_{2}=\mathbf{q}_{1}$.
(f) Is the rotation matrix $\mathbf{R}_{\theta}=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ an orthogonal matrix? Qualify your answer.
(g) Let $\hat{\mathbf{a}}$ and each of the vectors $\hat{\mathbf{b}}_{1}, \hat{\mathbf{b}}_{2}$ from part (b) in turn form two orthogonal matrices \mathbf{O}_{1} and \mathbf{O}_{2} like \mathbf{O} in part (c). If the transformation represents a rotation, find the angle. If not, try to figure out what the operation does represent.
(h) Transform the vector $\mathbf{s}=\binom{-5}{7}$ using each orthogonal matrix from part (g) in turn. Check that the new vectors $\mathbf{t}_{1}=\mathbf{O}_{1} \mathbf{s}$ and $\mathbf{t}_{2}=\mathbf{O}_{2} \mathbf{s}$ have the same magnitude as \mathbf{s}. Find the angle between \mathbf{s} and each of the vectors $\mathbf{t}_{1}, \mathbf{t}_{2}$, and draw all three vectors on a diagram.

