Classwork 4 - Cramer's Rule \& Gauss Elimination

This classwork is about solving a system of linear equations using either Cramer's rule (only applicable for n equations with n unknowns) or Gauss elimination (always applicable). See overleaf for both methods.

First consider the system of linear equations

$$
\begin{align*}
2 x-y+3 z & =9 \tag{1}\\
x-y+4 z & =10 \tag{2}\\
3 x+y+2 z & =6 . \tag{3}
\end{align*}
$$

1. Use Cramer's rule to find x, y, z. Apply the properties of determinants given on Fact Sheet 6 to facilitate their evaluation. Substitute the values of x, y, and z back into the original equations to verify that they are indeed satisfied.
2. Now follow these steps to solve the system of linear equations.
(a) Exchange Eqs. (1) and (2).
(b) Add (-3) \times (the new) Eq.(1) to Eq.(3) to eliminate x from this equation.
(b) Similarly, add (-2) \times Eq.(1) to Eq.(2) to eliminate x from this equation too.
(d) Add (-4)× (the modified) Eq.(2) to Eq.(3) to eliminate y from the equation.
(e) Hence, obtain z from the final version of Eq.(3), y from the final version of Eq.(2), and x from the final version of Eq.(1).
3. Solve this system of linear equations using Gauss elimination:

$$
\begin{align*}
x+2 y+z & =7 \tag{1}\\
-2 x+3 y-z & =-5 \tag{2}\\
3 x+12 y-6 z & =9 . \tag{3}
\end{align*}
$$

Once again, apply a procedure to eliminate x from Eq.(2) both x and y from Eq.(3).
4. Solve this 4×4 system using Gauss elimination:

$$
\begin{aligned}
x_{1}+2 x_{2}+x_{3}+3 x_{4} & =18 \\
2 x_{1}+4 x_{2}+6 x_{3}+x_{4} & =-3 \\
x_{1}+3 x_{2}+5 x_{4} & =24 \\
3 x_{1}+5 x_{2}+2 x_{3}+4 x_{4} & =40 .
\end{aligned}
$$

5. There's an obvious "problem" with this system of linear equations. Can you see what it is?

$$
\begin{aligned}
2 x-y+3 z & =9 \\
x-y+4 z & =10 \\
6 x-3 y+9 z & =27 .
\end{aligned}
$$

Solve the system of linear equations.
6. Solve the system of linear equations:

$$
\begin{aligned}
x+3 y-z & =6 \\
8 x+9 y+4 z & =21 \\
2 x+y+2 z & =3 .
\end{aligned}
$$

Cramer's Rule

Consider a system of n linear equations in n unknowns $x_{1}, x_{2}, \ldots, x_{n}$ written on the matrix form $\mathbf{A x}=\mathbf{b}$, where \mathbf{A} is the $n \times n$ matrix of coefficients of the system. If the determinant of \mathbf{A} is different from zero, $\operatorname{det} \mathbf{A} \neq 0$, then there is a unique solution and it is given by

$$
x_{j}=\frac{\operatorname{det} \mathbf{B}^{(j)}}{\operatorname{det} \mathbf{A}} \text { for } j=1,2, \ldots, n,
$$

where the matrix $\mathbf{B}^{(j)}$ is the matrix obtained from \mathbf{A} by replacing its j th column with column vector \mathbf{b} making up the right-hand side of the system of equations.

Notice: Cramer's rule is only applicable for a system of n equations with n unknowns. Moreover, Cramer's rule is only applicable when $\operatorname{det} \mathbf{A} \neq 0$, that is, when a unique solution exists. If det $\mathbf{A}=0$, no unique solution exists and Cramer's rule does not yield any more information about the system of linear equations.

Gauss elimination

None of the following operations changes the solution of a system of linear equations:
(i) Changing the order of the equations.
(ii) Multiplying all terms in an equation by the same non-zero constant.
(iii) Adding a multiple $r \in \mathbb{R}$ of any equation to any other equation. (The multiple can be negative, so addition includes subtraction.)
The strategy is to leave only x_{n} in the last equation, only x_{n-1} and x_{n} in the next last, and so on.

