## Classwork 2 - Roots of a Complex Number: Answers

1. (i) $w=(x+i y)(x+i y)=x^{2}+i x y+i y x+i^{2} y^{2}=\left(x^{2}-y^{2}\right)+i 2 x y$
(ii) $\operatorname{Re}(w)=x^{2}-y^{2}$ (iii) $\operatorname{Im}(z)=2 x y$ (not i2xy. The imaginary part is real!)
(iv) $|w|=\sqrt{\left(x^{2}-y^{2}\right)^{2}+(2 x y)^{2}}=\sqrt{\left(x^{2}+y^{2}\right)^{2}}=x^{2}+y^{2}$.
(v) $|z|=\sqrt{x^{2}+y^{2}}$.
(vi) $|w|=\left|z^{2}\right|=|z z|=|z||z|=|z|^{2}$, using the general result that $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$.
2. (i) Since $w=2+i 2 \sqrt{3}$ we find $|w|=\sqrt{2^{2}+(2 \sqrt{3})^{2}}=\sqrt{4+12}=4$. Hence $|z|=2$.
(ii) $\operatorname{Re}(w)=x^{2}-y^{2}=2$ and $\operatorname{Im}(z)=2 x y=2 \sqrt{3}$ implying that $x y=\sqrt{3}$.
(iii) From $x y=\sqrt{3}$ we deduce $y=\sqrt{3} / x$ (since $x \neq 0$ ). Substituting into the first equation, we find that $x^{2}-(\sqrt{3} / x)^{2}=2$ so by multiplying this equation with $x^{2}$ and rearranging, we find $x^{4}-2 x^{2}-3=0$.
(iv) $x^{4}-2 x^{2}-3$ is a polynomial of order 4 , so according to the fundamental theorem of algebra, the equation $x^{4}-2 x^{2}-3=0$ has exactly 4 roots. Let $u=x^{2}$ and the equation reads $u^{2}-2 u-3=0$ with solutions $u=\frac{2 \pm \sqrt{4-4 \cdot 1 \cdot(-3)}}{2}=\frac{2 \pm \sqrt{16}}{2}$, that is, $u=x^{2}=3$ or $u=x^{2}=-1$ yielding $x= \pm \sqrt{3}$ or $\pm i$.
(v) We have that $x$ is real by definition so the meaningful roots in this situation are $x= \pm \sqrt{3}$ associated with $y= \pm 1$. Hence $z=\sqrt{3}+i$ or $z=-\sqrt{3}-i$.
(vi) We find that $|z|=\sqrt{( \pm \sqrt{3})^{2}+( \pm 1)^{2}}=\sqrt{3+1}=2$ and $z^{2}=(\sqrt{3}+i)(\sqrt{3}+i)=3+i \sqrt{3}+i \sqrt{3}-1=2(1+i \sqrt{3})$ as they should be.
(vii) See overleaf.
(viii) In general $z=|z| e^{i \theta}$ where $\theta=\arg (z)$ is the argument of $z$. Solving $\arg (z)=\arctan (y / x)$ in conjunction with the Argand diagram, we find that $\arg (w)=\arctan (y / x)=\pi / 3$ such that $w=|w| e^{i \arg (w)}=4 e^{i \pi / 3}$ and similarly $\arg (z)=\arctan (1 / \sqrt{3})=\pi / 6,-5 \pi / 6$ such that $z=2 e^{i \pi / 6}$ or $z=2 e^{-i 5 \pi / 6}$
(ix) We have $w=4 e^{i(\pi / 3+2 \pi k)}$ where $k \in \mathbb{Z}$ in an integer. Hence $w^{1 / 2}=z=\left(4 e^{i(\pi / 3+2 \pi k)}\right)^{1 / 2}=2 e^{i(\pi / 6+\pi k)}$. Hence, the two different solutions are $z=2 e^{i \pi / 6}$ or $z=2 e^{-i 5 \pi / 6}$ or on rectangular form
$z=2(\cos \pi / 6+i \sin \pi / 6)=\sqrt{3}+i$ and
$z=2(\cos (-5 \pi / 6)+i \sin (-5 \pi / 6))=-\sqrt{3}-i$.
(x) We express $w$ on complex exponential form.
$|w|=\sqrt{(-2)^{2}+(2 \sqrt{3})^{2}}=\sqrt{4+12}=4$ and the principal value of the argument of $w$ is determined by $\arg (w)=\arctan (2 \sqrt{3} /(-2))=\arctan (-\sqrt{3})=2 \pi / 3+2 \pi k, k \in \mathbb{Z}$ so $w=4 e^{i(2 \pi / 3+2 \pi k)}$. Raising $w$ to the power of $1 / 2$ we find $w^{1 / 2}=z=2 e^{i(\pi / 3+\pi k)}$. The two different solutions with the principal argument of $z$ are $z=2 e^{i \pi / 3}$ and $z=2 e^{-i 2 \pi / 3}$.
3. (i) We write $8 i=8 e^{i \pi / 2}$ so raising to the power of $1 / 3$, we find $2 e^{i \pi / 6}$
(ii) $\left(2 e^{i 5 \pi / 6}\right)^{3}=8 e^{i 5 \pi / 2}=8 e^{i \pi / 2} e^{i 2 \pi}=8 i$ so $2 e^{i 5 \pi / 6}$ is another cube root of $8 i$.
(iii) $\left(2 e^{i 9 \pi / 6}\right)^{3}=8 e^{i 9 \pi / 2}=8 e^{i \pi / 2} e^{i 4 \pi}=8 i$ so $2 e^{i 9 \pi / 6}$ is yet another cube root of $8 i$.
(iv) $2 e^{i 13 \pi / 6}=2 e^{i \pi / 6} e^{i 2 \pi}=2 e^{i \pi / 6}$ which is the same as the first root found. If the process is repeated further, the results cycle for ever through the three roots found in 3(i)-(iii).
(v) We write $8 i=8 e^{i(\pi / 2+2 \pi k)}, k \in \mathbb{Z}$. Raising to the power of $1 / 3$, we find $(8 i)^{1 / 3}=\left(8 e^{i(\pi / 2+2 \pi k)}\right)^{1 / 3}=2 e^{i(\pi / 6+2 \pi k / 3)}=2 e^{i(\pi / 6+4 \pi k / 6)}=2 e^{i(1+4 k) \pi / 6}$. With $k=0,1,2$ we re-derive the three different cube roots of $8 i$ found in 3(i)-(iii)

