
Mathematical Techniques II: Algebra (Physics Year 1 Term 1)      CW1a: 02/11/2007 

Classwork  1 – Decay: Answers 
(a) Since ( )A t  denoted the population of species A  at time t  and the decay is proportial to 
the population, we find that in a time internal ( ) ( ) ( ) ,A t t t A t tAtΔ , + αΔ − = − Δ  where α  is 

the decay constant. Rearranging and taking the limit of 0tΔ →  yields .A
dt
dA α= −  There are 

various ways of solving this differential equation. Using the procedure of separating 

variables, we find dA dt
A

α= −  and integrating yields 1 dA
A

dtα= −∫ ∫ , that is,  

log ( )e A t ctα= − +  where c  is a constant of integration. Taking the exponential function on 
both sides of this equation, we have ( )A t ece tα−=

(0)A
. Applying the initial condition, we can 

determined the constant of integration: ce= , so we eventually find ( ) (0A t A )e tα−= . 

(b)     Since α  is a rate, it has SI-unit s-1 and hence tα  is dimensionless (as it should be since 
it appears as an argument of the exponential function!). 

(c)     (i) 1 1( ) (0)A t A e t α− −= ⇔ = . 

        (ii)  log 21 1( ) (0) log 2
2 2

t e
eA t A e t tα α

α
−= ⇔ = ⇔ − = − ⇔ = . 

(d) The population of species B  at time t  is the population at time 0t =  plus the 
population of species  that has decays into A B  since 0t = , that is, 

( ) (0) ( (0) ) (0) 0)(1 )B t B A B(A t ) (A te α−−= + =− + . 

(e) Using similar arguments as in (a), we find that ( ) ( ) [ ( ) ( )]B t t B t A t B t tα β+ Δ − = − Δ  

Rearranging and taking the limit of  yields the differential equation 0tΔ →
dB A B
dt

α β= − . 

Substituting the solution for ( )A t  into this equation, we arrive at (0) tdB B A e
dt

αβ α −+ = . 

Multiply through by the integrating factor teβ  and rearranging the LHS we 

have ( )( ) (0) td Be A e
dt

tβ
β αα −= . Integrating, using definite integrals (see Fact Sheet 1, 

page 2) yields ( )
0

0

(0)
tt t

t

Be A eβ α −⎡ ⎤ =⎣ ⎦ ∫ dtβ α . Assuming α β≠ , we find that 

( )( 1)( ) (0) (0)t eB t e B Aβ α
β α

tβ α− −
− =

−
. Hence, we find that the population of species B  at 

time t : ( )t te( ) (0) (0)tB t B e A e α β
β α−= +

β α

− −−
−

. 
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(f) When , the solution simplifies to (0) 0B =
( )( ) (0)

t te eB t A
α β

α
β α

− −−
=

−
. 

        (i) If α β  then t te eβ α− −  and α β α− ≈  so we find;

 1( )( )B t (0) e e
α β

− −

(0) tA e β ( )
t t

A t
β α

α α− −−
−

= ≈  

 The te α− term falls to zero (on a timescale of 1~ α − ) as the population of A decays 
rapidly into B.  Subsequently, ( ) (0) tB t A e β−≈  as B decays more gradually into C.    

 (ii) If α β  then t te eβ α− −  and α β β− ≈ −  so we find;  

1)β(0)A e( ) ( ) (
t

B t A t t
αα α

β β

−
−≈ ≡ . 

 The te β− term falls to zero (on a timescale of 1~ β − ) as the population of B reaches 
dynamic equilibrium with that of A.  Thereafter, both species decays at essentially the 

same rate, maintaining a fixed ratio ( )
( )

B t
A t

1α
β

= . 

 Refer to the graphs on the separate sheet.   

(g) It is not obvious how to apply the solution of part (e) in the case where α β= .  Here 
are two ways to overcome the problem.   

 (1) Go back to ( )
0

0

(0)
ttt tBe A eβ βα −⎡ ⎤ =⎣ ⎦ ∫ dtα  and set α β=  to obtain 

 ( ) (0) (0) ( ) (0) (0) .t t tB t e B A t B t B e A teβ β βα α− −− = ⇔ = +  

 (2) Set β α δ= +  and take 0δ → at the end of the calculation in (e).  From the solution 
to part (e)  

 
( )( ) (1( ) (0) (0) (0) (0)

t t
t te e eB t B e A B e A e )t

t
α α δ δ

β βα α
β α δ

− − + −
− −− −

= + = +
−

α−  

 But  for small δ, so 1 ...te tδ δ− = − +

( ) (0) (0) (0) (0)t t t ttB t B e A e B e A teβ α β αδα α
δ

− − − −= += +  as in (1).  
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