Electronics problem sheet 4 - solutions, January 2005

Dr Mark Neil
1.

$f_{3 d B}=\frac{\omega_{3 d B}}{2 \pi}=\frac{1}{2 \pi R C}=7.95 \mathrm{~Hz}$
At $\omega=70: \quad \frac{\tilde{V}_{o}}{\tilde{V}_{i}}=\frac{1}{1+j 70 \times 10^{4} \times 2 \times 10^{-6}}=\frac{1}{1+j 1.4}=\frac{1}{\sqrt{2.96}} e^{-j \tan ^{-1}(1.4)}$
At DC: $\quad \frac{\tilde{V}_{o}}{\tilde{V}_{i}}=1$
$V_{o}(t)=\frac{10}{\sqrt{2.96}} \cos \left(70 t-\tan ^{-1}(1.4)\right)+15=5.81 \cos \left(70 t-54.5^{\circ}\right)$
2. Removal of 99.9% of 100 KHz signal means that 0.1% or -60 dB attenuation of signal at 100 KHz . As the filter performance will be very close to the $-20 \mathrm{~dB} /$ decade high frequency asymptote then this implies that $\mathrm{f}_{3 \mathrm{~dB}}=100 \mathrm{~Hz}$ (three decades lower in frequency). A simple RC filter as in question 1 will do and its output impedance (Thevenin or Norton equivalent) is just R in parallel with C . Its maximum value (modulus) is at DC and is therefore simply R so we should choose $\mathrm{R}=1 \Omega$.

$$
f_{3 d B}=\frac{\omega_{3 d B}}{2 \pi}=\frac{1}{2 \pi R C}=100 \mathrm{~Hz} \quad C=\frac{1}{2 \pi R f_{3 d B}}=\frac{1}{200 \pi}=1,600 \mu \mathrm{~F}
$$

3.

$\frac{\tilde{V}_{i}}{\tilde{V}_{o}}=\frac{R_{i} / / \frac{1}{j \omega C_{i}}}{R_{o}+R_{i} / / \frac{1}{j \omega C_{i}}}=\frac{\frac{R_{i}}{1+j \omega C_{i} R_{i}}}{R_{o}+\frac{R_{i}}{1+j \omega C_{i} R_{i}}}=\frac{R_{i}}{R_{o}\left(1+j \omega C_{i} R_{i}\right)+R_{i}}=\frac{R_{i}}{R_{o}+R_{i}} \frac{1}{1+j \omega C_{i} \frac{R_{o} R_{i}}{R_{o}+R_{i}}}$
$\omega_{3 d B}=\frac{1}{C_{i} \frac{R_{o} R_{i}}{R_{o}+R_{i}}}=\frac{R_{o}+R_{i}}{C_{i} R_{o} R_{i}}=7.8 \mathrm{Mrads}^{-1} \quad f_{3 d B}=\frac{\omega_{3 d B}}{2 \pi}=1.24 \mathrm{MHz}$
4.

$$
\frac{\tilde{V}_{i}}{\tilde{V}_{p}}=\frac{R_{i} / / \frac{1}{j \omega C_{i}}}{R_{p} / / \frac{1}{j \omega C_{p}}+R_{i} / / \frac{1}{j \omega C_{i}}}=\frac{\frac{R_{i}}{1+j \omega C_{i} R_{i}}}{\frac{R_{p}}{1+j \omega C_{p} R_{p}}+\frac{R_{i}}{1+j \omega C_{i} R_{i}}}=\frac{R_{i}}{R_{p} \frac{1+j \omega C_{i} R_{i}}{1+j \omega C_{p} R_{p}}+R_{i}}
$$

$$
\text { if } C_{p} R_{p}=C_{i} R_{i} \quad \frac{\tilde{V}_{i}}{\tilde{V}_{p}}=\frac{R_{i}}{R_{p}+R_{i}}=\frac{1}{10}
$$

$$
R_{p}=9 R_{i} \quad \therefore C_{p}=\frac{R_{i} C_{i}}{R_{p}}=\frac{R_{i} C_{i}}{9 R_{i}}=\frac{C_{i}}{9}=1.44 p F
$$

$$
\text { at } \omega=2 \pi \times 10^{6} \mathrm{rads}^{-1}
$$

$$
\left|Z_{C_{p}}\right|=\frac{1}{\omega C_{p}}=110 k \Omega \ll 9 M \Omega \quad\left|Z_{C_{i}}\right|=\frac{1}{\omega C_{i}}=12 k \Omega \ll 1 M \Omega
$$

The total input capacitance C_{T} is approximately equal to C_{p} in series with C_{i},

$$
C_{T}=\frac{C_{p} C_{i}}{C_{p}+C_{i}}=\frac{\frac{C_{i}}{9} C_{i}}{\frac{C_{i}}{9}+C_{i}}=\frac{C_{i}}{10}=1.3 p F
$$

C_{T} forms a low pass filter in combination with $\mathrm{R}_{\mathrm{o}}=10 \mathrm{k} \Omega$ from the output of the circuit. Can get 3 dB frequency from:

$$
f_{3 d B}=\frac{\omega_{3 d B}}{2 \pi}=\frac{1}{2 \pi R_{o} C_{T}}=12 \mathrm{MHz}
$$

5.

$$
\begin{aligned}
& Z=Z_{R}+Z_{C}+Z_{L}=R+\frac{1}{j \omega C}+j \omega L=\frac{1+j \omega C R-\omega^{2} L C}{j \omega C} \\
& |Z|=\frac{\left|1+j \omega C R-\omega^{2} L C\right|}{|j \omega C|}=\frac{\sqrt{\left(1-\omega^{2} L C\right)^{2}+(\omega C R)^{2}}}{\omega C}
\end{aligned}
$$

$$
\operatorname{Arg}[Z]=\operatorname{Arg}\left[1+j \omega C R-\omega^{2} L C\right]-\operatorname{Arg}[j \omega C]=\tan ^{-1}\left(\frac{\omega C R}{1-\omega^{2} L C}\right)-\frac{\pi}{2}
$$

compare with standard form $\left(1+j \frac{\omega}{\omega_{o} Q}-\frac{\omega^{2}}{\omega_{o}^{2}}\right)$
$\omega_{o}=\frac{1}{\sqrt{L C}} \quad f_{o}=\frac{\omega_{o}}{2 \pi}=\frac{1}{2 \pi \sqrt{L C}}$
$Q=\frac{1}{\omega_{o} R C}$
$\tilde{I}=\frac{\tilde{V}_{i}}{Z}=\frac{j \omega C \tilde{V}_{i}}{1+j \omega C R-\omega^{2} L C}$
$\tilde{V}_{R}=\tilde{I} R=\frac{j \omega C R}{1+j \omega C R-\omega^{2} L C} \tilde{V}_{i}$
6.

$$
\frac{\tilde{V}_{C}}{\tilde{V}_{i}}=\frac{1}{1+j \omega R C-\omega^{2} L C}=\frac{1}{1+j \frac{\omega}{\omega_{o} Q}-\frac{\omega^{2}}{\omega_{o}{ }^{2}}}
$$

$$
\left|\frac{\tilde{V}_{c}}{\tilde{V}_{i}}\right|^{2}=\frac{1}{\left(1-\frac{\omega^{2}}{\omega_{o}{ }^{2}}\right)^{2}+\left(\frac{\omega}{\omega_{o} Q}\right)^{2}}
$$

$$
\text { substitute } \quad y=\left|\frac{\tilde{V}_{C}}{\tilde{V}_{i}}\right|^{2}, x=\left(\frac{\omega}{\omega_{o}}\right)^{2} \Rightarrow y=\frac{1}{(1-x)^{2}+\frac{x}{Q}}
$$

$$
\frac{d y}{d x}=-\frac{-2(1-x)+\frac{1}{Q^{2}}}{\left((1-x)^{2}+\frac{x}{Q}\right)^{2}}=-\frac{2 x+\left(\frac{1}{Q^{2}}-2\right)}{\left((1-x)^{2}+\frac{x}{Q}\right)^{2}}=0
$$

$$
\therefore x=1-\frac{1}{2 Q^{2}} \quad \Rightarrow \quad \omega=\omega_{o} \sqrt{1-\frac{1}{2 Q^{2}}}
$$

If $\mathrm{Q}^{2}<0.5$ then the number inside the square root is -ve, the frequency at which the peak occurs would be imaginary and hence there is no peak.

$$
\begin{aligned}
& Q=\frac{1}{\omega_{0} R C}=\frac{1}{R} \sqrt{\frac{L}{C}} \\
& R=\frac{1}{Q} \sqrt{\frac{L}{C}}=\frac{1}{0.5} \sqrt{\frac{4.7 \times 10^{-3}}{100 \times 10^{-12}}}=13.7 \mathrm{k} \Omega
\end{aligned}
$$

7.

$$
Q \approx \frac{\omega_{o}}{\Delta \omega_{3 d B}}=\frac{f_{o}}{\Delta f_{3 d B}}=\frac{10^{6}}{10^{4}}=100
$$

Convert suggested arrangement into Norton equivalent

Calculate equivalent impedance Z_{T} of LCR in parallel

$$
\begin{aligned}
& Z_{T}=Z_{R} / / Z_{C} / / Z_{L}=\frac{1}{\frac{1}{R}+j \omega C+\frac{1}{j \omega L}}=\frac{j \omega L}{1+j \omega \frac{L}{R}-\omega^{2} L C} \\
& \tilde{V}_{o}=\tilde{I}_{i} Z_{T}=\tilde{I}_{i} \frac{j \omega L}{1+j \omega \frac{L}{R}-\omega^{2} L C}=\tilde{V}_{i} \frac{j \omega \frac{L}{R}}{1+j \omega \frac{L}{R}-\omega^{2} L C}
\end{aligned}
$$

Transfer function describes a band pass filter (because of ω dependence in numerator) with characteristics obtainable by comparison with the standard form (see above):

$$
\omega_{o}=\frac{1}{\sqrt{L C}} \quad f_{o}=\frac{\omega_{o}}{2 \pi}=\frac{1}{2 \pi \sqrt{L C}}
$$

Choose $C=100 p F$ (for instance)

$$
\begin{aligned}
& L=\frac{1}{4 \pi^{2} f_{o}^{2} C}=\frac{1}{4 \pi^{2} 100}=253 \mu H \\
& Q=\frac{R}{\omega_{o} L}=100
\end{aligned}
$$

$$
R=\omega_{o} L Q=2 \pi \times 10^{6} \times 253 \times 10^{-6} \times 100=159 k \Omega
$$

[You would be lucky to achieve a Q as high as 100 , in practice the resistances present in the capacitor and inductor would limit the achievable Q and a much higher value of R than that calculated here would be needed]
8.

By applying Kirchhoff's voltage law around the loop we get:

$$
\begin{aligned}
& V=V_{R}+V_{L}+V_{C}=I R+L \frac{d I}{d t}+\frac{1}{C} \int I d t=R \frac{d q}{d t}+L \frac{d^{2} q}{d t^{2}}+\frac{q}{C} \\
& L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{q}{C}=V_{o} \cos (\omega t)
\end{aligned}
$$

For a simple mechanical forced harmonic oscillator:

$$
m \frac{d^{2} x}{d t^{2}}+b \frac{d x}{d t}+k x=F(t)
$$

displacement	$x \Leftrightarrow q$
mass	$m \Leftrightarrow L$
damping constant	$b \Leftrightarrow R$
restoring force constant	$k \Leftrightarrow \frac{1}{C}$
driving force	$F(t) \Leftrightarrow V(t)$

9. V_{o} and ϕ essentially depend on the initial conditions, i.e. what is happening in the circuit at time $t=0$. Two conditions initial conditions are necessary to define V_{o} and ϕ. These might for instance be $V_{o}(0)$ and $d V_{0} / d t(0)$ or $V_{L}(0)$ and $V_{R}(0)$ or even $V_{c}(0)$ and $I(0)$.
For a series resonant circuit

$$
\begin{array}{ll}
\omega_{o}=\frac{1}{\sqrt{L C}} & Q=\frac{1}{\omega_{o} R C}=\frac{\omega_{o} L}{R}=\frac{1}{R} \sqrt{\frac{L}{C}} \\
\alpha=\frac{\omega_{o}}{2 Q}=\frac{R}{2 L} & \omega^{\prime}=\omega_{o} \sqrt{1-\frac{1}{4 Q^{2}}}=\sqrt{\omega_{o}^{2}-\frac{\omega_{o}^{2}}{4 Q^{2}}}=\sqrt{\frac{1}{L C}-\frac{R^{2}}{4 L^{2}}}
\end{array}
$$

For a parallel resonant circuit
$\omega_{o}=\frac{1}{\sqrt{L C}} \quad Q=\omega_{o} R C=\frac{R}{\omega_{o} L}=R \sqrt{\frac{C}{L}}$
$\alpha=\frac{\omega_{o}}{2 Q}=\frac{1}{2 R C} \quad \omega^{\prime}=\omega_{o} \sqrt{1-\frac{1}{4 Q^{2}}}=\sqrt{\omega_{o}^{2}-\frac{\omega_{o}^{2}}{4 Q^{2}}}=\sqrt{\frac{1}{L C}-\frac{1}{4 R^{2} C^{2}}}$
Graph below shows of $\mathrm{V}(\mathrm{t})$ for the case of $\omega=10, \mathrm{Q}=10, \mathrm{~V}_{\mathrm{o}}=1$ and $\phi=0$.

