Electronics problem sheet 3 - solutions, January 2005

Dr Mark Neil

1.

$$
\begin{array}{lll}
\text { Resistors } & V=I R & \\
\text { Inductors } & V=L \frac{d I}{d t} & I=\frac{1}{L} \int V d t \\
\text { Capacitors } & V=\frac{1}{C} \int I d t & I=C \frac{d V}{d t}
\end{array}
$$

2.

$$
\begin{aligned}
& C=\frac{\varepsilon_{r} \varepsilon_{o} A}{d} \\
& A=\frac{C d}{\varepsilon_{o}}=\frac{10^{-6} \times 10^{-3}}{8.85 \times 10^{-12}}=113 \mathrm{~m}^{2}
\end{aligned}
$$

If breakdown voltage is $1 \mathrm{kV} / \mathrm{mm}$ then maximum voltage allowed is 1 kV . Energy stored $=0.5 \mathrm{CV}^{2}=0.5 \times 10^{-6} \times\left(10^{3}\right)^{2}=0.5 \mathrm{~J}$.
3.

$$
\begin{aligned}
& L=\frac{\mu N^{2} A}{l} \\
& N=\sqrt{\frac{l L}{\mu_{r} \mu_{o} A}}=\sqrt{\frac{0.05 \times 10^{-4}}{400 \times 4 \pi \times 10^{-7} \times \pi \times 0.004^{2}}}=14.06
\end{aligned}
$$

14 turns is closest value
4. At DC the inductor looks like a short circuit and so there can be no voltage across L . There is therefore no current through R_{2} and the whole of the source voltage V falls across R_{1}. The current through R_{1} is therefore $I_{0}=V / R_{1}$. This current then all flows through L too.
At the instant the switch is opened there can be no current in R_{1} as it is open circuited and hence the voltag across R_{1} is 0 V . Howver the full value of I_{0} must still be flowing down L and hence up R_{2} (as drawn in the question) i.e. in a loop through L and R_{2}. The voltage across the inductor and the resistor R_{2} must have identical magnitude ($I_{0} R_{2}$), but of opposite sign in respect to the direction of current flow as they form a loop where the total voltage around the loop must be zero. The sign is defined by the fact the top of the resistor and inductor is at a negative voltage relative to the bottom as drawn. Applying Kirchhoff's voltage law around this loop:

$$
\begin{aligned}
& L \frac{d I}{d t}+I R_{2}=0 \\
& \int_{I_{o}}^{I} \frac{1}{I} d I=\int_{0}^{t}-\frac{R}{L} d t \\
& {[\ln (I)]_{I_{o}}^{I}=-\ln \left(\frac{I}{I_{o}}\right)=\left[-\frac{R_{2}}{L} I\right.} \\
& I(t)=I_{o} e^{-\frac{R_{2}}{L} t}
\end{aligned}
$$

Instantaneous power in the resistor is given by $\mathrm{P}(\mathrm{t})=\mathrm{I}^{2}(\mathrm{t}) \mathrm{R}$ and integrating power with respect to time gives the total energy, U , dissipated in the resistor (and which originally was stored in the inductor):

$$
\begin{aligned}
& P(t)=I(t)^{2} R_{2}=I_{o}{ }^{2} R_{2} e^{-\frac{2 R_{2}}{L} t} \\
& U=\int_{0}^{\infty} P(t) d t=\int_{0}^{\infty} I_{o}^{2} R_{2} e^{-\frac{2 R_{2}}{L} t} d t=\left[-\frac{L}{2 R_{2}} I_{o}^{2} R_{2} e^{-\frac{2 R_{2}}{L} t}\right]_{0}^{\infty}=\frac{1}{2} L I_{0}^{2}
\end{aligned}
$$

5. See graph below labelling DC and AC components for the required signal

$$
V(t)=5+2.5 \cos (\omega t+\pi / 4) .
$$

6. Assume circular contact capacitor electrodes of diameter 10 mm .
(i)

$$
C=\frac{\varepsilon_{r} \varepsilon_{o} A}{d}=\frac{80 \times 8.85 \times 10^{-12} \times \pi\left(5 \times 10^{-3}\right)^{2}}{10^{-5}}=5.56 \times 10^{-9} \mathrm{~F}=5.6 \mathrm{nF}
$$

(ii)

$$
|Z|=\frac{1}{\omega C}=\frac{1}{2 \pi \times 10^{9} \times 5.6 \times 10^{-9}}=0.0286 \Omega=29 \mathrm{~m} \Omega
$$

Note that the capacitor looks very much like a short circuit (the peak current is actually $\mathrm{V}_{\max }|\mathrm{Z}|=35 \mathrm{~A}!$!)
(iii) Maximum charge is stored when voltage is a maximum so:

$$
Q_{\max }=C V_{\max }=5.6 \times 10^{-9} \times 1=5.6 n C
$$

7.

(i)

$$
\begin{aligned}
& V(t)=7 \cos \left(\omega t+\frac{\pi}{2}\right) \\
& \tilde{V}=7 e^{j \frac{\pi}{2}}=7 j
\end{aligned}
$$

(ii)
$V(t)=3 \sin (\omega t)=3 \cos \left(\omega t-\frac{\pi}{2}\right)$
$\tilde{V}=3 e^{-j \frac{\pi}{2}}=-3 j$
(iii)

$$
\begin{array}{ll}
V_{1}(t)=2 \cos \left(\omega t+\frac{\pi}{4}\right) & \tilde{V}_{1}=2 e^{j \frac{\pi}{4}}=\sqrt{2}(1+j) \\
V_{2}(t)=4 \sin \left(\omega t+\frac{\pi}{2}\right)=4 \cos (\omega t) & \tilde{V}_{2}=4 e^{j 0}=4 \\
\tilde{V}=\tilde{V}_{1}+\tilde{V}_{2}=(4+\sqrt{2})+\sqrt{2} j=5.60 e^{j 0.255} &
\end{array}
$$

8. See above for Argand diagram
(i) $\tilde{V}=2=2 e^{j 0}$
$V(t)=2 \cos (\omega t)$
(ii) $\tilde{V}=12 j=12 e^{j \frac{\pi}{2}}$
$V(t)=12 \cos \left(\omega t+\frac{\pi}{2}\right)=-12 \sin (\omega t)$
(iii) $\tilde{V}=6+6 j=6 \sqrt{2} e^{j \frac{\pi}{4}}$
$V(t)=6 \sqrt{2} \cos \left(\omega t+\frac{\pi}{4}\right)=8.49 \cos \left(\omega t+\frac{\pi}{4}\right)$
(iv) $\tilde{V}=2-4 j=\sqrt{2^{2}+4^{2}} e^{j \tan ^{-1}\left(\frac{-4}{2}\right)}=\sqrt{20} e^{-j 1.11}$
$V(t)=\sqrt{20} \cos (\omega t-1.11)=4.47 \cos (\omega t-1.11)$
(v) $\tilde{V}=2 e^{j \frac{\pi}{3}}=1+\sqrt{3} j \quad V(t)=2 \cos \left(\omega t+\frac{\pi}{3}\right)$
9.

10.
$\tilde{V}=V_{o} e^{j \frac{\pi}{4}}$
$\tilde{I}=\frac{V_{o}}{2} e^{j 0}$
$Z=\frac{\tilde{V}}{\tilde{I}}=\frac{V_{o} e^{j \frac{\pi}{4}}}{\frac{V_{o}}{2} e^{j 0}}=2 e^{j \frac{\pi}{4}}=\sqrt{2}(1+j) \Omega$
Equivalent to a resistor and inductor in series where the magnitude of the impedance of the inductor equals that of the resistor $(\sqrt{ } 2 \Omega)$.

