Electronics problem sheet 2 - solutions, January 2005

Dr Mark Neil

1. Voltage difference across the resistor is $10-4=6 \mathrm{~V}$.

So the current through the resistor is $\mathrm{I}=6 / 100=0.06 \mathrm{~A}=60 \mathrm{~mA}$. Power in the resistor can be calculated in several ways: e.g. $I^{2} R=0.06^{*} 0.06^{*} 100=0.36 \mathrm{~W}=360 \mathrm{~mW}$.
Increasing the voltage at both ends of the resistor by the same amount doesn't chance the voltage difference across the resistor so the current and power remain the same.
2.
(a) Potential divider: Open circuit voltage $V_{T}=\mathrm{VR}_{2} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}\right) . \mathrm{R}_{0}$ is resistance between terminals with V replaced by short circuit $=\mathrm{R}_{2} / /\left(\mathrm{R}_{1}+\mathrm{R}_{3}\right)=\mathrm{R}_{2}\left(\mathrm{R}_{1}+\mathrm{R}_{3}\right)$ $/\left(\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}\right) . \mathrm{I}_{\mathrm{N}}=\mathrm{V}_{\mathrm{T}} / \mathrm{R}_{0}=\mathrm{V} /\left(\mathrm{R}_{1}+\mathrm{R}_{3}\right)$.
(b) R_{1} and R_{2} in parallel gives impedance $R_{4}=R_{1} R_{2} /\left(R_{1}+R_{2}\right)$. Now looks like potential divider again:

Open circuit voltage $\mathrm{V}_{\mathrm{T}}=\mathrm{VR}_{3} /\left(\mathrm{R}_{3}+\mathrm{R}_{4}\right)=\mathrm{VR}_{3} /\left(\mathrm{R}_{3}+\mathrm{R}_{1} \mathrm{R}_{2} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)\right)$

$$
\mathrm{V}_{\mathrm{T}}=\mathrm{VR}_{3}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) /\left(\mathrm{R}_{1} \mathrm{R}_{2}+\mathrm{R}_{2} \mathrm{R}_{3}+\mathrm{R}_{3} \mathrm{R}_{1}\right)
$$

R_{0} is resistance between terminals if V is replaced by short circuit

$$
\mathrm{R}_{0}=\mathrm{R}_{1} / / \mathrm{R}_{2} / / \mathrm{R}_{3}=\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{R}_{3} /\left(\mathrm{R}_{1} \mathrm{R}_{2}+\mathrm{R}_{2} \mathrm{R}_{3}+\mathrm{R}_{3} \mathrm{R}_{1}\right)
$$

$$
\mathrm{I}_{\mathrm{N}}=\mathrm{V}_{\mathrm{R}} / \mathrm{R}_{0}=\mathrm{V}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) /\left(\mathrm{R}_{1} \mathrm{R}_{2}\right)
$$

(c) Two 2Ω resistors in parallel are equivalent to a single 1Ω resistor. 2 A current source in parallel with 1Ω resistor is equivalent to a 2 V source in series with 1Ω resistor. Adding 2 V source in series with 3 V source gives a total 5 V source still in series with a 1Ω resistor. Circuit now looks like a simple potential divider:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{T}}=5 \mathrm{Vx} 4 \Omega /(1 \Omega+4 \Omega)=4 \mathrm{~V} . \\
& \mathrm{I}_{\mathrm{N}}=\mathrm{I}_{\mathrm{SC}}=5 \mathrm{~V} / 1 \Omega=5 \mathrm{~A} . \\
& \mathrm{R}_{\mathrm{o}}=\mathrm{V}_{\mathrm{T}} / \mathrm{I}_{\mathrm{N}}=4 / 5 \Omega
\end{aligned}
$$

3. See notes "kirchhoff-nodal-mesh.pdf" on teaching website.
4.

Choose reference node $(0 \mathrm{~V})$ at bottom of voltage source and top of current source. Other nodes are then 3 V and unknown V_{1}.

Single node voltage equation summing currents into V_{1} gives:

$$
\begin{aligned}
& -2 A+\frac{\left(3-V_{1}\right)}{4}+\frac{\left(0-V_{1}\right)}{2}+\frac{\left(0-V_{1}\right)}{2}=0 \\
& -8+3-V_{1}-2 V_{1}-2 V_{1}=0 \\
& 5 V_{1}=-5 \\
& V_{1}=-1 V
\end{aligned}
$$

Check $\mathrm{V}_{\mathrm{oc}}=3-\mathrm{V}_{1}=4 \mathrm{~V}$ (same as answer to 2(c))
5.

Three loops as shown. One loop has known current 2A flowing round it, the other two have unknown currents I_{1} and I_{2} flowing round them. Sum voltages round the loops I_{1} and I_{2} :

$$
\begin{gathered}
\left(I_{1}-2\right) \times 2+\left(I_{1}-I_{2}\right) \times 2=0 \\
4 I_{1}-2 I_{2}-4=0 \\
\left(I_{2}-I_{1}\right) \times 2+\left(I_{2}\right) \times 4=3 \\
6 I_{2}-2 I_{1}=3 \\
6 I_{2}-\left(I_{2}+2\right)=3 \\
5 I_{2}=5 \\
I_{2}=1 \mathrm{~A} \\
I_{1}=\left(4+2 I_{2}\right) / 4=1.5 \mathrm{~A}
\end{gathered}
$$

Current down 2Ω resistors $=2-\mathrm{I}_{1}=0.5 \mathrm{~A}$ or $\mathrm{I}_{1}-\mathrm{I}_{2}=0.5 \mathrm{~A}$ (both should be the same anyway). Current down 4Ω resistor $=I_{2}=1 \mathrm{~A}$.
6. The relationship between V_{2} and V_{3} can be easily obtained at the two $1 \mathrm{k} \Omega$ resistors form a potential divider such that $V_{3}=V_{2} / 2$.

These two $1 \mathrm{k} \Omega$ resistors also form a combined $2 \mathrm{k} \Omega$ resistance when added in series. This $2 \mathrm{k} \Omega$ resistance lies in parallel with the $2 \mathrm{k} \Omega$ resistance across which V_{2} is measured and so the pair of them can be replaced by a single $1 \mathrm{k} \Omega$ resistor as shown below.

Thus the relationship between V_{2} and V_{1} becomes apparent as it is identical to that between V_{3} and V_{2}, ie $V_{2}=V_{1} / 2$.

By repeating the same resistor simplification we can also see that $V_{1}=8 \mathrm{~V} / 2=4 \mathrm{~V}$.
Thus $V_{1}=4 \mathrm{~V}, \mathrm{~V}_{2}=2 \mathrm{~V}$ and $\mathrm{V}_{3}=1 \mathrm{~V}$.
7. In all cases apply the virtual earth approximation $\mathrm{V}_{+}=\mathrm{V}_{-}$and no current flows into the input.
(a) $\mathrm{V}_{+}=\mathrm{V}_{-}=\mathrm{V}_{\mathrm{i}}=1 \mathrm{~V}$. Summing currents into $\mathrm{V}_{\text {- }}$ and using $\mathrm{R}_{2}=9 \mathrm{k} \Omega$ and $\mathrm{R}_{1}=1 \mathrm{k} \Omega$:

$$
\begin{aligned}
& \frac{\left(V_{o}-V_{-}\right)}{R_{2}}+\frac{\left(0-V_{-}\right)}{R_{1}}=0 \\
& \left(V_{o}-V_{i}\right) R_{1}-V_{i} R_{2}=0 \\
& V_{o}=V_{i}\left(1+\frac{R_{2}}{R_{1}}\right)=1 V\left(1+\frac{9 k \Omega}{1 k \Omega}\right)=10 \mathrm{~V}
\end{aligned}
$$

(b) $\mathrm{V}_{+}=\mathrm{V}_{-}=0 \mathrm{~V}$. Summing currents into V_{-}and using $\mathrm{R}_{2}=200 \mathrm{k} \Omega$ and $\mathrm{R}_{1}=10 \mathrm{k} \Omega$:

$$
\begin{aligned}
& \frac{\left(V_{o}-V_{-}\right)}{R_{2}}+\frac{\left(V_{i}-V_{-}\right)}{R_{1}}=0 \\
& V_{o} R_{1}+V_{i} R_{2}=0 \\
& V_{o}=-V_{i}\left(\frac{R_{2}}{R_{1}}\right)=-10 \mathrm{mV}\left(\frac{200 \mathrm{k} \Omega}{10 \mathrm{k} \Omega}\right)=-200 \mathrm{mV}
\end{aligned}
$$

(c) $\mathrm{V}_{+}=\mathrm{V}_{-}=0 \mathrm{~V}$. Summing currents into V_{-}and using $\mathrm{R}=1 \mathrm{M} \Omega, \mathrm{I}=5 \mu \mathrm{~A}$:
$-I+\frac{\left(V_{o}-V_{-}\right)}{R_{1}}=0$

$$
\begin{aligned}
& V_{o}-I R=0 \\
& V_{o}=I R=5 \mu \mathrm{~A} \times 1 M \Omega=5 \mathrm{~V}
\end{aligned}
$$

8. With all switches connected to ground the Thevenin equivalent up to the op-amp input must have 0 V as its voltage source. Switching in each of the S_{n} to $-\mathrm{V}_{\text {ref }}$ individually will produce a Thevenin voltage source V_{Tn} which can be summed appropriately (by superposition) to give the total Thevenin voltage according to the combination of S_{n}.
First consider case of S_{0} closed to $-\mathrm{V}_{\text {ref }}$ and S_{1} and S_{2} closed to ground (0 V). A slight rearrangement of the circuit up to the input to the op-amp gives:

Replacing the boxed circuit with its Thevenin equivalent gives:

Repeating the process gives:

Now look at S_{1} closed to $-V_{\text {ref }}$ and S_{2} and S_{3} closed to ground (0 V). Rearrangement of the circuit and then simplifying the boxed network of resistors gives:

Now looks like case above at top of page but producing $\mathrm{V}_{\mathrm{T} 1}=-\mathrm{V}_{\text {ref }} / 4$.
Similar approach for S_{2} produces $\mathrm{V}_{\mathrm{T} 2}=-\mathrm{V}_{\mathrm{ref}} / 2$.
Summing all Thevenin voltages by superposition gives a circuit:

Circuit now forms inverting amplifier with gain -1. So $\mathrm{V}_{\mathrm{o}}=-\left(\mathrm{V}_{\mathrm{T} 0}+\mathrm{V}_{\mathrm{T} 1}+\mathrm{V}_{\mathrm{T} 2}+\right)=7 \mathrm{~V}_{\text {ref }} / 8$. Circuit can generate voltages up to $7 \mathrm{~V}_{\text {ref }} / 8$ in steps of $\mathrm{V}_{\text {ref }} / 8$ according to the positions of the various S_{n}.

