Electronics problem sheet 2 - solutions, January 2005

Dr Mark Neil

1. Voltage difference across the resistor is 10-4=6V.

So the current through the resistor is I=6/100=0.06A=60mA. Power in the resistor can be calculated in several ways: e.g. $I^2R = 0.06*0.06*100=0.36W=360mW$.

Increasing the voltage at both ends of the resistor by the same amount doesn't chance the voltage difference across the resistor so the current and power remain the same.

2.

- (a) Potential divider: Open circuit voltage $V_T = VR_2/(R_1+R_2+R_3)$. R_o is resistance between terminals with V replaced by short circuit = $R_2//(R_1+R_3)=R_2(R_1+R_3)/(R_1+R_2+R_3)$. $I_N = V_T/R_o = V/(R_1+R_3)$.
- (b) R_1 and R_2 in parallel gives impedance $R_4=R_1R_2/(R_1+R_2)$. Now looks like potential divider again:

Open circuit voltage $V_T = VR_3/(R_3+R_4) = VR_3/(R_3+R_1R_2/(R_1+R_2))$

 $V_T = VR_3(R_1 + R_2)/(R_1R_2 + R_2R_3 + R_3R_1)$

R_o is resistance between terminals if V is replaced by short circuit

$$R_0 = R_1 / / R_2 / / R_3 = R_1 R_2 R_3 / (R_1 R_2 + R_2 R_3 + R_3 R_1)$$

 $I_N = V_R / R_o = V(R_1 + R_2) / (R_1 R_2)$

(c) Two 2Ω resistors in parallel are equivalent to a single 1Ω resistor. 2A current source in parallel with 1Ω resistor is equivalent to a 2V source in series with 1Ω resistor. Adding 2V source in series with 3V source gives a total 5V source still in series with a 1Ω resistor. Circuit now looks like a simple potential divider:

 $V_T = 5V_X 4\Omega/(1\Omega + 4\Omega) = 4V.$ $I_N = I_{SC} = 5V/1\Omega = 5A.$ $R_o = V_T/I_N = 4/5\Omega$

3. See notes "kirchhoff-nodal-mesh.pdf" on teaching website.

4.

Choose reference node (0V) at bottom of voltage source and top of current source. Other nodes are then 3V and unknown V_1 .

Single node voltage equation summing currents into V₁ gives:

$$-2A + \frac{(3-V_1)}{4} + \frac{(0-V_1)}{2} + \frac{(0-V_1)}{2} = 0$$

-8+3-V_1 - 2V_1 - 2V_1 = 0
$$5V_1 = -5$$

$$V_1 = -1V$$

Check V_{oc} =3-V₁=4V (same as answer to 2(c))

5.

Three loops as shown. One loop has known current 2A flowing round it, the other two have unknown currents I_1 and I_2 flowing round them. Sum voltages round the loops I_1 and I_2 :

$$(I_1 - 2) \times 2 + (I_1 - I_2) \times 2 = 0$$

$$4I_1 - 2I_2 - 4 = 0$$

$$(I_2 - I_1) \times 2 + (I_2) \times 4 = 3$$

$$6I_2 - 2I_1 = 3$$

$$6I_2 - (I_2 + 2) = 3$$

$$5I_2 = 5$$

$$I_2 = 1A$$

$$I_1 = (4 + 2I_2) / 4 = 1.5A$$

Current down 2Ω resistors = 2-I₁=0.5A or I₁-I₂=0.5A (both should be the same anyway). Current down 4Ω resistor=I₂=1A.

6. The relationship between V₂and V₃ can be easily obtained at the two 1k Ω resistors form a potential divider such that V₃=V₂/2.

These two $1k\Omega$ resistors also form a combined $2k\Omega$ resistance when added in series. This $2k\Omega$ resistance lies in parallel with the $2k\Omega$ resistance across which V_2 is measured and so the pair of them can be replaced by a single $1k\Omega$ resistor as shown below. $1k\Omega$ $1k\Omega$

Thus the relationship between V_2 and V_1 becomes apparent as it is identical to that between V_3 and V_2 , ie $V_2=V_1/2$.

By repeating the same resistor simplification we can also see that $V_1=8V/2=4V$.

Thus $V_1=4V$, $V_2=2V$ and $V_3=1V$.

- 7. In all cases apply the virtual earth approximation V₊=V₋ and no current flows into the input.
 - (a) V₊=V₋=V_i=1V. Summing currents into V₋ and using R_2 =9k Ω and R_1 =1k Ω :

$$\frac{(V_o - V_-)}{R_2} + \frac{(0 - V_-)}{R_1} = 0$$

(V_o - V_i) R_1 - V_i R_2 = 0
$$V_o = V_i \left(1 + \frac{R_2}{R_1}\right) = 1V \left(1 + \frac{9k\Omega}{1k\Omega}\right) = 10V$$

(b) V₊=V₋=0V. Summing currents into V₋ and using R_2 =200k Ω and R_1 =10k Ω :

$$\frac{(V_o - V_-)}{R_2} + \frac{(V_i - V_-)}{R_1} = 0$$
$$V_o R_1 + V_i R_2 = 0$$
$$V_o = -V_i \left(\frac{R_2}{R_1}\right) = -10 mV \left(\frac{200 k\Omega}{10 k\Omega}\right) = -200 mV$$

(c) V₊=V₋=0V. Summing currents into V₋ and using R=1M Ω , I=5 μ A:

$$-I + \frac{(V_o - V_-)}{R_1} = 0$$
$$V_o - IR = 0$$
$$V_o = IR = 5\mu A \times 1M\Omega = 5V$$

8. With all switches connected to ground the Thevenin equivalent up to the op-amp input must have 0V as its voltage source. Switching in each of the S_n to $-V_{ref}$ individually will produce a Thevenin voltage source V_{Tn} which can be summed appropriately (by superposition) to give the total Thevenin voltage according to the combination of S_n .

First consider case of S_0 closed to $-V_{ref}$ and S_1 and S_2 closed to ground (0V). A slight rearrangement of the circuit up to the input to the op-amp gives:

Replacing the boxed circuit with its Thevenin equivalent gives:

Repeating the process gives:

Now look at S_1 closed to $-V_{ref}$ and S_2 and S_3 closed to ground (0V). Rearrangement of the circuit and then simplifying the boxed network of resistors gives:

Now looks like case above at top of page but producing $V_{T1}=-V_{ref}/4$. Similar approach for S₂ produces $V_{T2}=-V_{ref}/2$.

Summing all Thevenin voltages by superposition gives a circuit:

Circuit now forms inverting amplifier with gain -1. So $V_o = -(V_{T0} + V_{T1} + V_{T2} +) = 7V_{ref}/8$. Circuit can generate voltages up to $7V_{ref}/8$ in steps of $V_{ref}/8$ according to the positions of the various S_n .