Problem sheet 2, January 2005

Dr Mark Neil

1. A single 100Ω resistor has a voltage of 10 V applied to one end and 4 V to the other. How much current flows through the resistor as a result and how much power is dissipated? If the voltages on either side of the resistor are both increased by 20 V at the same time how do your answers change?
2. Find Thévenin and Norton equivalent circuits for the following networks.

3. How do the principles of conservation of charge and conservation of energy in an electrical circuit lead to Kirchhoff's laws. State Kirchhoff's laws in as concise a form as possible.
4. Write down the node voltage equations for the circuit in 2(c) and hence find the voltage at each node in the circuit.
5. Write down the mesh current equations for the circuit in 2(c) and hence determine the current in each resistor in the circuit.
6. For the following network of resistors calculate the voltages V_{1}, V_{2} and V_{3}. [Hint think about simplifying the circuit in blocks and work out the relationship between the various voltages as potential dividers eg $\mathrm{V}_{3} / \mathrm{V}_{2}$].

7. Calculate the output voltage for each of the following op-amp circuits

8. Resistor ladder networks like that in question 6 can used to construct digital to analog converters (circuits that turn a binary digital number into an analog voltage). For the circuit shown below determine what range of output voltages can be achieved by switching the switches S_{0} to S_{2} between ground and $-\mathrm{V}_{\text {ref. }}$. [Hint: use superposition to work out the Thevenin equivalent of the network connected to the op-amp input when each of the S_{n} is independently switched to $-\mathrm{V}_{\text {ref }}$ in turn while the others are switch to

