Problem sheet 1 - solutions, January 2005

Dr Mark Neil

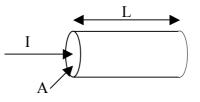
1. Charge is an inherent and indestructible property of certain forms of matter. It is measured in Coulombs. 1 coulomb is the charge of $1/(1.6 \times 10^{-19})=6.25 \times 10^{18}$ electrons.

Current is the flow of charge. 1 amp of current is the flow of 1 coulomb of charge per second across a boundary.

Voltage is a measure of the potential energy of charge possesses. Raising a charge of 1 coulomb by 1 volt increases its potential energy by 1 joule.

Assume that the computer contains 100g of copper. Copper has a density of about 8.9gcm⁻³≈10gcm⁻³. This implies that the computer contains 100/10=10cm³ of copper.

If 1 m³ contains $7x10^{28}$ electrons then 10cm³ contains $7x10^{23}$ electrons. Total free electron charge in copper = $7x10^{23}x1.6x10^{-19} \approx 10^{5}$ C.


Power from power supply=100W = VxI = 5xI so $I = 20A = 20Cs^{-1}$.

Time to turn over charge in copper = $10^{5}/20 = 5000$ s ≈ 1.5 hours.

Mircoprocessor takes 10A of current = $10Cs^{-1} = 10/(1.6x10^{-19})$ electrons per second $\approx 6x10^{19}$ e s⁻¹.

Electrons per computation = $6x10^{19}/(10^9) = 6x10^{10}$ electrons.

3. Assume a cylindrical resistor geometry where the electric field and the current density are uniform and pointing along the axis of the cylinder:

Resistance of cylinder, $R = L/(\sigma A)$

Voltage along cylinder V=ExL

Current density in the wire J=I/A.

From ohm's law:

V=IR

Substitute for V, I and R:

EL=JA x L/(σ A)=JL/ σ

Rearrange and cancel L :

```
J=\sigma E
```

QED

4. Assume film thickness of d and that the film is sufficiently thin that we can write its cross sectional area as dx(cylinder circumference)= $3\pi dx 10^{-3}$.

Resistance R is given by

 $R = \rho L/A = 8\rho x 10^{-3}/(3dx 10^{-3}) = 8\rho/(3\pi d).$

Can calculate d from

 $d=8\rho/(3\pi R)$.

put in values:

	Copper	Carbon film	Metal oxide
1Ω	14.4 nm	0.51mm	8.5 mm
1kΩ	14.4 pm	0.51µm	8.5 µm
1MΩ	14.4 fm	0.51 nm	8.5 nm

Realistic values are probably in range 1nm to 100μ m - only a range of 10^5 in resistance is possible. Need to be able to tailor material resistivity by varying composition (eg metals in the oxide mix).

For ceramic substrate

$$R{=}\rho L/A{=}{=}\rho x8x10^{-3}/(\pi x(3x10^{-3})^2/4){=}32,000\rho/(9\pi){>}10^8\Omega$$

So

 $\rho > 8.8 \times 10^5 \Omega m$

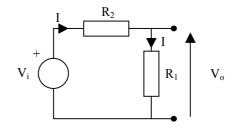
5. Symmetry determines that the current flows out from the centre in a radial direction. So hemispherical shells are on equipotentials. Consider a single shell of radius r and thickness dr. Its cross surface area is $2\pi r^2$ and hence its resistance dR is given by:

 $dR = \rho dr/(2\pi r^2)$

The resistance of a series of shells (like layers on the onion) add in series so the total resistance can be obtained by integration.

$$R = \int_{r_o}^{\infty} \frac{\rho}{2\pi r^2} dr = \left[\frac{-\rho}{2\pi r}\right]_{r_o}^{\infty} = \frac{\rho}{2\pi r_o} = \frac{10}{2\pi 0.1} = 16\Omega$$

$$R_1 = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$


Multiply top and bottom by $R_1R_2R_3$ and simplify.

$$R = \frac{R_1 R_2 R_3}{\frac{R_1 R_2 R_3}{R_1} + \frac{R_1 R_2 R_3}{R_2} + \frac{R_1 R_2 R_3}{R_3}} = \frac{R_1 R_2 R_3}{R_2 R_3 + R_1 R_3 + R_1 R_2}$$

Put in values:

$$R = (2x3x6)/(3x6+2x6+2x3) = 36/36 = 1\Omega$$

7.

As no current is drawn and the output terminals the current in both resistors must be the same (I). By Kirchhoff's voltage law we can write

V_i=IR₂+IR₁

The output voltage Vo is the voltage across R1 so

V_o=IR₁

Taking the ratio of V_o/V_i gives

$$V_o/V_i = IR_1/(IR_1 + IR_2) = R_1/(R_1 + R_2)$$

Or

 $V_0 = V_i R_1 / (R_1 + R_2)$

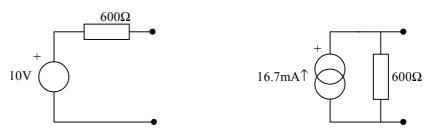
8. Energy of each photon is given by:

 $E_{ph}=hc/\lambda$ [h=Planck's constant, c=speed of light, λ =wavelength]

So number of photons hitting photodiode per second N is given by:

N=Power/E_{ph}= $10^{-3}x632.8x10^{-9}/(6.63x10^{-34}x3x10^{8})=4.77x10^{15} \text{ s}^{-1}$

Current generated I = Ne = $4.77 \times 10^{15} \times 1.6 \times 10^{-19} = 0.51 \text{ mA}$

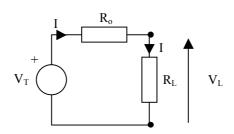

Current source can't put out more power than it receives so VI<1mW so V<1.96V Energy of 632.8nm photon in $eV=hc/(\lambda e)=1.96eV$

9. Assume knob is turned up to full 10V:

 $V_{OC}=V_T=10V$

 $R_0=600\Omega$ as stated

 $I_N = V_T / R_o = 10/600 = 16.7 mA$



Input impedance of amplifier is $20k\Omega$ so by a potential divider the voltage appearing at the output of the signal generator and the input to the amplifier is now

V=10x20/(20+0.6)=9.709V

Gain of amplifier is x100 so the voltage delivered to the load is 970.9V

10.

Power dissipated in the load P_L is given by

$$P_L = I^2 R_L$$

Total power dissipated P_T is given by:

$$P_T = I^2(R_o + R_L)$$

So efficiency = $P_L/P_T = R_L/(R_o + R_L) = 50\%$ When $R_o = R_L$

For 90% efficiency $R_L/(R_o+R_L)=0.9$

 $R_L=0.9R_o/(1-0.9)=9R_o$

Total current now flowing I

 $I = V_T / (R_o + R_L) = V_T / (10R_o)$

Power in load =
$$I^2 R_L = 9 R_0 V_T^2 / (100 R_0^2) = 0.09 V_T^2 / R_0$$

Compare with maximum power of

$$P_{MAX} = 0.25 V_T^2 / R_o$$

Only 36% of P_{MAX}