Problem sheet 1 -solutions, January 2005

Dr Mark Neil

1. Charge is an inherent and indestructible property of certain forms of matter. It is measured in Coulombs. 1 coulomb is the charge of $1 /\left(1.6 \times 10^{-19}\right)=6.25 \times 10^{18}$ electrons.
Current is the flow of charge. 1 amp of current is the flow of 1 coulomb of charge per second across a boundary.
Voltage is a measure of the potential energy of charge possesses. Raising a charge of 1 coulomb by 1 volt increases its potential energy by 1 joule.
2. Assume that the computer contains 100 g of copper. Copper has a density of about $8.9 \mathrm{gcm}^{-3} \approx 10 \mathrm{gcm}^{-3}$. This implies that the computer contains $100 / 10=10 \mathrm{~cm}^{3}$ of copper. If $1 \mathrm{~m}^{3}$ contains 7×10^{28} electrons then $10 \mathrm{~cm}^{3}$ contains 7×10^{23} electrons. Total free electron charge in copper $=7 \times 10^{23} \times 1.6 \times 10^{-19} \approx 10^{5} \mathrm{C}$.
Power from power supply $=100 \mathrm{~W}=\mathrm{VxI}=5 \mathrm{xI}$ so $\mathrm{I}=20 \mathrm{~A}=20 \mathrm{Cs}^{-1}$.
Time to turn over charge in copper $=10^{5} / 20=5000 \mathrm{~s} \approx 1.5$ hours.
Mircoprocessor takes 10 A of current $=10 \mathrm{Cs}^{-1}=10 /\left(1.6 \times 10^{-19}\right)$ electrons per second \approx $6 \times 10^{19} \mathrm{e} \mathrm{s}^{-1}$.
Electrons per computation $=6 \times 10^{19} /\left(10^{9}\right)=6 \times 10^{10}$ electrons.
3. Assume a cylindrical resistor geometry where the electric field and the current density are uniform and pointing along the axis of the cylinder:

Resistance of cylinder, $\mathrm{R}=\mathrm{L} /(\sigma \mathrm{A})$
Voltage along cylinder $\mathrm{V}=\mathrm{ExL}$
Current density in the wire J=I/A.
From ohm's law:

$$
\mathrm{V}=\mathrm{IR}
$$

Substitute for V, I and R:

$$
\mathrm{EL}=\mathrm{JA} \times \mathrm{L} /(\sigma \mathrm{A})=\mathrm{JL} / \sigma
$$

Rearrange and cancel L:

$$
\mathrm{J}=\sigma \mathrm{E}
$$

QED
4. Assume film thickness of d and that the film is sufficiently thin that we can write its cross sectional area as $\mathrm{dx}($ cylinder circumference $)=3 \pi \mathrm{dx} 10^{-3}$.

Resistance R is given by

$$
\mathrm{R}=\rho \mathrm{L} / \mathrm{A}=8 \rho \times 10^{-3} /\left(3 \mathrm{~d} \times 10^{-3}\right)=8 \rho /(3 \pi \mathrm{~d}) .
$$

Can calculate d from

$$
\mathrm{d}=8 \rho /(3 \pi \mathrm{R}) .
$$

put in values:

	Copper	Carbon film	Metal oxide
1Ω	14.4 nm	0.51 mm	8.5 mm
$1 \mathrm{k} \Omega$	14.4 pm	$0.51 \mu \mathrm{~m}$	$8.5 \mu \mathrm{~m}$
$1 \mathrm{M} \Omega$	14.4 fm	0.51 nm	8.5 nm

Realistic values are probably in range 1 nm to $100 \mu \mathrm{~m}$ - only a range of 10^{5} in resistance is possible. Need to be able to tailor material resistivity by varying composition (eg metals in the oxide mix).

For ceramic substrate

$$
\mathrm{R}=\rho \mathrm{L} / \mathrm{A}==\rho \times 8 \times 10^{-3} /\left(\pi \times\left(3 \times 10^{-3}\right)^{2} / 4\right)=32,000 \rho /(9 \pi)>10^{8} \Omega
$$

So

$$
\rho>8.8 \times 10^{5} \Omega \mathrm{~m}
$$

5. Symmetry determines that the current flows out from the centre in a radial direction. So hemispherical shells are on equipotentials. Consider a single shell of radius r and thickness dr. Its cross surface area is $2 \pi r^{2}$ and hence its resistance dR is given by:

$$
\mathrm{dR}=\rho \mathrm{dr} /\left(2 \pi \mathrm{r}^{2}\right)
$$

The resistance of a series of shells (like layers on the onion) add in series so the total resistance can be obtained by integration.

$$
R=\int_{r_{o}}^{\infty} \frac{\rho}{2 \pi r^{2}} d r=\left[\frac{-\rho}{2 \pi r}\right]_{r_{o}}^{\infty}=\frac{\rho}{2 \pi r_{o}}=\frac{10}{2 \pi 0.1}=16 \Omega
$$

6.

$$
R=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}}
$$

Multiply top and bottom by $\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{R}_{3}$ and simplify.

$$
R=\frac{R_{1} R_{2} R_{3}}{\frac{R_{1} R_{2} R_{3}}{R_{1}}+\frac{R_{1} R_{2} R_{3}}{R_{2}}+\frac{R_{1} R_{2} R_{3}}{R_{3}}}=\frac{R_{1} R_{2} R_{3}}{R_{2} R_{3}+R_{1} R_{3}+R_{1} R_{2}}
$$

Put in values:

$$
\mathrm{R}=(2 \times 3 \times 6) /(3 \times 6+2 \times 6+2 \times 3)=36 / 36=1 \Omega
$$

7.

As no current is drawn and the output terminals the current in both resistors must be the same (I). By Kirchhoff's voltage law we can write

$$
\mathrm{V}_{\mathrm{i}}=\mathrm{IR}_{2}+\mathrm{IR}_{1}
$$

The output voltage V_{o} is the voltage across R_{1} so

$$
\mathrm{V}_{\mathrm{o}}=\mathrm{IR}_{1}
$$

Taking the ratio of V_{o} / V_{i} gives

$$
\mathrm{V}_{\mathrm{o}} / \mathrm{V}_{\mathrm{i}}=\mathrm{IR}_{1} /\left(\mathrm{IR}_{1}+\mathrm{IR}_{2}\right)=\mathrm{R}_{1} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)
$$

Or

$$
\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{i}} \mathrm{R}_{1} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)
$$

8. Energy of each photon is given by:

$$
\mathrm{E}_{\mathrm{ph}}=\mathrm{hc} / \lambda \quad[\mathrm{h}=\text { Planck's constant, } \mathrm{c}=\text { speed of light }, \lambda=\text { wavelength }]
$$

So number of photons hitting photodiode per second N is given by:

$$
\mathrm{N}=\text { Power } / \mathrm{E}_{\mathrm{ph}}=10^{-3} \times 632.8 \times 10^{-9} /\left(6.63 \times 10^{-34} \times 3 \times 10^{8}\right)=4.77 \times 10^{15} \mathrm{~s}^{-1}
$$

Current generated $\mathrm{I}=\mathrm{Ne}=4.77 \times 10^{15} \times 1.6 \times 10^{-19}=0.51 \mathrm{~mA}$
Current source can't put out more power than it receives so $\mathrm{VI}<1 \mathrm{~mW}$ so $\mathrm{V}<1.96 \mathrm{~V}$
Energy of 632.8 nm photon in $\mathrm{eV}=\mathrm{hc} /(\lambda \mathrm{e})=1.96 \mathrm{eV}$
9. Assume knob is turned up to full 10 V :
$\mathrm{V}_{\mathrm{OC}}=\mathrm{V}_{\mathrm{T}}=10 \mathrm{~V}$
$\mathrm{R}_{\mathrm{o}}=600 \Omega$ as stated
$\mathrm{I}_{\mathrm{N}}=\mathrm{V}_{\mathrm{T}} / \mathrm{R}_{\mathrm{o}}=10 / 600=16.7 \mathrm{~mA}$

Input impedance of amplifier is $20 \mathrm{k} \Omega$ so by a potential divider the voltage appearing at the output of the signal generator and the input to the amplifier is now

$$
\mathrm{V}=10 \times 20 /(20+0.6)=9.709 \mathrm{~V}
$$

Gain of amplifier is $\times 100$ so the voltage delivered to the load is 970.9 V
10.

Power dissipated in the load P_{L} is given by

$$
P_{L}=I^{2} R_{L}
$$

Total power dissipated P_{T} is given by:

$$
\mathrm{P}_{\mathrm{T}}=\mathrm{I}^{2}\left(\mathrm{R}_{\mathrm{o}}+\mathrm{R}_{\mathrm{L}}\right)
$$

So efficiency $=\mathrm{P}_{\mathrm{L}} / \mathrm{P}_{\mathrm{T}}=\mathrm{R}_{\mathrm{L}} /\left(\mathrm{R}_{0}+\mathrm{R}_{\mathrm{L}}\right)=50 \%$ When $\mathrm{R}_{0}=\mathrm{R}_{\mathrm{L}}$
For 90% efficiency $\mathrm{R}_{\mathrm{L}} /\left(\mathrm{R}_{0}+\mathrm{R}_{\mathrm{L}}\right)=0.9$

$$
\mathrm{R}_{\mathrm{L}}=0.9 \mathrm{R}_{0} /(1-0.9)=9 \mathrm{R}_{0}
$$

Total current now flowing I

$$
\begin{aligned}
& \mathrm{I}=\mathrm{V}_{\mathrm{T}} /\left(\mathrm{R}_{\mathrm{o}}+\mathrm{R}_{\mathrm{L}}\right)=\mathrm{V}_{\mathrm{T}} /\left(10 \mathrm{R}_{\mathrm{o}}\right) \\
& \text { Power in load }=\mathrm{I}^{2} \mathrm{R}_{\mathrm{L}}=9 \mathrm{R}_{\mathrm{o}} \mathrm{~V}_{\mathrm{T}}^{2} /\left(100 \mathrm{R}_{0}^{2}\right)=0.09 \mathrm{~V}_{\mathrm{T}}^{2} / \mathrm{R}_{0}
\end{aligned}
$$

Compare with maximum power of

$$
\mathrm{P}_{\mathrm{MAX}}=0.25 \mathrm{~V}_{\mathrm{T}}^{2} / \mathrm{R}_{\mathrm{o}}
$$

Only 36% of $\mathrm{P}_{\mathrm{MAX}}$

