Electronics Classwork 4 - Solutions, $27^{\text {th }}$ January 2005

Dr Mark Neil

1. Potential divider:

$$
\frac{\tilde{V}_{o}}{\tilde{V}_{i}}=\frac{j \omega L}{R+j \omega L}=\frac{j \omega \frac{L}{R}}{1+j \omega \frac{L}{R}}
$$

(a)
as $\omega \rightarrow 0: \frac{\tilde{V}_{o}}{\tilde{V}_{i}} \rightarrow \frac{j \omega \frac{L}{R}}{1}=j \omega \frac{L}{R}$
as $\omega \rightarrow \infty: \frac{\tilde{V}_{o}}{\tilde{V}_{i}} \rightarrow \frac{j \omega \frac{L}{R}}{j \omega \frac{L}{R}}=1$
$\omega \rightarrow 0$ asymptote is straight line of $+20 \mathrm{~dB} /$ decade crossing 0 dB at $\omega=\mathrm{R} / \mathrm{L}=10^{5} \mathrm{rad} \mathrm{s}^{-1}$
$\omega \rightarrow \infty$ asymptote is a straight horizontal line at 0 dB
(b) $\omega_{3 \mathrm{~dB}}=10^{5}$ (see above) $\mathrm{f}_{3 \mathrm{~dB}}=\omega_{3 \mathrm{~dB}} /(2 \pi)=15.9 \mathrm{kHz}$
(c)

(d) High pass filter
2. (a)

$$
Z=\frac{1}{\frac{1}{R}+\frac{1}{j \omega L}+j \omega C}=\frac{j \omega L}{1+j \omega \frac{L}{R}-\omega^{2} L C}
$$

(b)

$$
\tilde{V}=\tilde{I}_{o} Z=\tilde{I}_{o} \frac{j \omega L}{1+j \omega \frac{L}{R}-\omega^{2} L C}
$$

(c)

$$
\tilde{I}_{R}=\frac{\tilde{V}}{R}=\tilde{I}_{o} \frac{j \omega \frac{L}{R}}{1+j \omega \frac{L}{R}-\omega^{2} L C}=\tilde{I}_{o} \frac{A \omega}{1+j \frac{\omega}{\omega_{o} Q}-\frac{\omega^{2}}{\omega_{o}{ }^{2}}}
$$

$$
A=j \frac{L}{R} ; \omega_{o}=\frac{1}{\sqrt{L C}} ; Q=\frac{R}{\omega_{o} L}
$$

(d)

$$
\begin{aligned}
& \omega_{o}=2 \pi f=2 \pi \times 125,000=7.85 \times 10^{5} \mathrm{rad} \mathrm{~s}^{-1} \\
& C=\frac{1}{\omega_{o}^{2} L}=463 n F \\
& Q=\frac{R}{\omega_{o} L}=36.4
\end{aligned}
$$

(e) At resonance $\omega=\omega_{o}$

$$
\begin{aligned}
& \tilde{V}=\tilde{I}_{o} \frac{j \omega L}{1+j \omega \frac{L}{R}-1}=\tilde{I}_{o} \frac{j \omega L}{j \omega \frac{L}{R}}=\tilde{I}_{o} R=0.1 \times 100=10 \mathrm{~V} \\
& \tilde{I}_{R}=\frac{\tilde{V}}{R}=0.1 \mathrm{~A} \\
& \tilde{I}_{C}=\tilde{V j \omega_{o} C=3.64 j A} \\
& \tilde{I}_{L}=\frac{\tilde{V}}{j \omega_{o} L}=-3.64 j A
\end{aligned}
$$

(f) If there were no capacitor the current source would have to supply both the 100 mA for the resistor and the 3.64 A for the inductor. However these would be 90° out of phase and so would add in quadrature to give a total current of $\sqrt{ }\left(0.1^{2}+3.64^{2}\right)=3.64 \mathrm{~A}$
3.
$\frac{\tilde{I}_{R}}{\tilde{I}_{o}}=\frac{j \omega \frac{L}{R}}{1+j \omega \frac{L}{R}-\omega^{2} L C}$
as $\omega \rightarrow 0: \frac{\tilde{I}_{R}}{\tilde{I}_{o}} \rightarrow \frac{j \omega \frac{L}{R}}{1}=j \omega \frac{L}{R}$
as $\omega \rightarrow \infty: \frac{\tilde{I}_{R}}{\tilde{I}_{o}} \rightarrow \frac{j \omega \frac{L}{R}}{-\omega^{2} L C}=\frac{1}{j \omega R C}$
at $\omega=\frac{1}{\sqrt{L C}}: \frac{\tilde{I}_{R}}{\tilde{I}_{o}} \rightarrow \frac{j \omega \frac{L}{R}}{1+j \omega \frac{L}{R}-1}=1$
$\omega \rightarrow 0$ asymptote is straight line of $+20 \mathrm{~dB} /$ decade crossing 0 dB at $\omega=\mathrm{R} / \mathrm{L}=2.86 \times 10^{7} \mathrm{rad} \mathrm{s}^{-1}$ $\omega \rightarrow \infty$ asymptote is straight line of $-20 \mathrm{~dB} /$ decade crossing 0 dB at $\omega=1 / \mathrm{RC}=2.16 \times 10^{5} \mathrm{rad} \mathrm{s}^{-1}$ $\omega=\omega_{0}=7.85 \times 10^{5}$ graph must pass through 0 dB

