Electronics Classwork 2 - Solutions, $\mathbf{1 3}^{\text {th }}$ January 2005

Dr Mark Neil

1.

(a) Circuit forms a potential divider so $\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{oc}}=2 /(1+2) \times 3 \mathrm{~V}=2 \mathrm{~V}$. Resistance between terminals if voltage source is shorted out, $\mathrm{R}_{\mathrm{o}}=1 \Omega / / 2 \Omega=1 \times 2 /(1+2)=2 / 3 \Omega$. Norton Current $\mathrm{I}_{\mathrm{N}}=\mathrm{V}_{\mathrm{T}} / \mathrm{R}_{\mathrm{o}}=2 /(2 / 3)=3 \mathrm{~A}$.

(b) 2 A current flows in a loop through both resistors. $\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{oc}}=2 \mathrm{~A} \times 2 \Omega=4 \mathrm{~V}$. Resistance between terminals if we open circuit the current source is simply $R_{0}=2 \Omega$. $I_{N}=I_{s c}=2 \mathrm{~A}$ as the whole current will flow down the current source rather than through the 2Ω resistor. [Note that the 1Ω resistor is irrelevant and plays no role in the circuit!]

(c) The Voltage source is shorted out which cannot happen in practice so the circuit will not work
(d) Two different current sources are placed in series and as both cannot produce their desired current simultaneously the circuit could not function in practice.
(e) Convert the 0.5 mA current source in parallel with the $10 \mathrm{k} \Omega$ resistor into its Thevenin equivalent, a 5 V voltage source in series with a $10 \mathrm{k} \Omega$ resistor, which then adds in series with the other 10 k resistor to give a 20 k resistor:

By superposition we can consider each voltage source separately and work out the V_{oc} for each then add them up at the end. Short out the 5 V source and we simply see a potential divider operating on the 5 V source to give a terminal voltage of $\mathrm{V}_{\text {ocl }}=2.5 \mathrm{~V}$ (the two resistors are equal). Shorting the 5 V source we likewise see $\mathrm{V}_{\mathrm{oc} 2}=7.5 \mathrm{~V}$ at the terminals. $\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{oc} 1}+\mathrm{V}_{\mathrm{oc} 2}=10 \mathrm{~V}$. $\mathrm{R}_{\mathrm{o}}=20 \mathrm{k} / / 20 \mathrm{k}=10 \mathrm{k} . \mathrm{I}_{\mathrm{N}}=\mathrm{V}_{\mathrm{T}} / \mathrm{R}_{\mathrm{o}}=1 \mathrm{~mA}$.

(f) Redraw with 2 voltage sources, splitting the connection at the top node:

Each side is simply a potential divider (like part (a)) so convert each into its Thevenin equivalent

Voltages add (subtract) in series to give a total voltage of $\mathrm{V}_{\mathrm{T}}=10 / 3-5 / 2=5 / 6 \mathrm{~V}$. Resistors add in series to give $\mathrm{R}_{\mathrm{o}}=2+2=4 \Omega$. $\mathrm{I}_{\mathrm{N}}=5 / 6 / 4=5 / 24 \mathrm{~A}$.

2. Connect 1Ω to output of circuit $1(\mathrm{f})$ and form a potential divider. Output voltage

$$
\mathrm{V}_{\mathrm{o}}=1 /(1+4) \times 5 / 6=1 / 6 \mathrm{~V}
$$

Which is consistent with our observation in lectures of a current of $1 / 6 \mathrm{~A}$ in the 1Ω resistor.
3. Nodal analysis:

4 nodes including reference 0 V and known +15 V . Two unknown nodes V_{1} and V_{2}.
Summing currents into V_{1}

$$
\begin{equation*}
\left(15-\mathrm{V}_{1}\right) / 20 \mathrm{k}+\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right) / 10 \mathrm{k}=0 \tag{1}
\end{equation*}
$$

Summing currents into V_{2}

$$
\begin{equation*}
0.5 \mathrm{~mA}+\left(0-\mathrm{V}_{2}\right) / 10 \mathrm{k}+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) / 10 \mathrm{k}=0 \tag{2}
\end{equation*}
$$

[Note that dealing in units of $\mathrm{V}, \mathrm{k} \Omega$ and mA is entirely consistent]
From (1) x 200

$$
150-10 \mathrm{~V}_{1}+20 \mathrm{~V}_{2}-20 \mathrm{~V}_{1}=0 \quad \Rightarrow \quad 30 \mathrm{~V}_{1}=150+20 \mathrm{~V}_{2}
$$

Rearrange:

$$
\begin{equation*}
\mathrm{V}_{1}=5+2 \mathrm{~V}_{2} / 3 \tag{3}
\end{equation*}
$$

From (2) x 100

$$
50-10 \mathrm{~V}_{2}+10 \mathrm{~V}_{1}-10 \mathrm{~V}_{2}=0
$$

Substitute for V_{1} with equation 3:

$$
50-20 \mathrm{~V}_{2}+50+20 \mathrm{~V}_{2} / 3=0 \quad \Rightarrow \quad \mathrm{~V}_{2}(20-20 / 3)=100
$$

Rearrange

$$
\mathrm{V}_{2}=100 \times 3 / 40=7.5 \mathrm{~V}
$$

Now find V_{1} :

$$
\mathrm{V}_{1}=5+2 \times 7.5 / 3=5+5=10 \mathrm{~V}
$$

Current in 10k resistor $=\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) / 10=2.5 / 10=0.25 \mathrm{~mA}$ (flows right to left)
Mesh analysis:

0 V
2 loops, one with known current 0.5 mA and the second with unknown current I_{1} Sum voltages around unknown loop:

$$
-15=\left(\mathrm{I}_{1}-0.5 \mathrm{~mA}\right) 10 \mathrm{k}+\mathrm{I}_{1} 10 \mathrm{k}+\mathrm{I}_{1} 20 \mathrm{k}
$$

Rearrange

$$
\begin{aligned}
& 40 \mathrm{I}_{1}=-15+5=-10 \\
& \mathrm{I}_{1}=-1 / 4 \mathrm{~mA}
\end{aligned}
$$

Current 0.25 mA flows right to left.
4. Virtual earth approximation:

Same voltage appears at each input, no current is drawn by either input Use superposition and treat each input separately:
Short input V_{2} to ground, effectively places +ve input to ground too: [forms a simple inverting amplifier]

$\mathrm{V}_{+}=\mathrm{V}_{-}=0 \mathrm{~V}$. Summing currents at V_{-}

$$
\begin{aligned}
& \left(\mathrm{V}_{1}-\mathrm{V}_{-}\right) / \mathrm{R}+\left(\mathrm{V}_{\mathrm{ol}}-\mathrm{V}_{-}\right) / \mathrm{R}=0=\left(\mathrm{V}_{1}-0\right) / \mathrm{R}+\left(\mathrm{V}_{\mathrm{ol} 1}-0\right) / \mathrm{R} \\
& \mathrm{~V}_{\mathrm{ol}}=-\mathrm{V}_{1}
\end{aligned}
$$

Short input V_{1} to ground and rearrange circuit:

Forms a potential divider at input so $\mathrm{V}_{+}=\mathrm{R} /(\mathrm{R}+\mathrm{R}) \mathrm{xV}_{2}=\mathrm{V}_{2} / 2$
The rest of the circuit forms a simple non inverting amplifier: Summing currents at V .
$\left(\mathrm{V}_{\mathrm{O} 2}-\mathrm{V}_{-}\right) / \mathrm{R}+\left(0-\mathrm{V}_{-}\right) / \mathrm{R}=0=\left(\mathrm{V}_{\mathrm{o} 2}-\mathrm{V}_{2} / 2\right) / \mathrm{R}+\left(0-\mathrm{V}_{2} / 2\right) / \mathrm{R}$

$$
\mathrm{V}_{\mathrm{o} 2}=\mathrm{V}_{2}
$$

Total $\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{ol} 1}+\mathrm{V}_{\mathrm{o} 2}=\mathrm{V}_{2}-\mathrm{V}_{1}$
So $\mathrm{A}=1$

