First Year Electricity \& Magnetism Classwork 1 Quiz

Steve Schwartz

5 February 2008

Imperial College	
London	5 February 2008

1. A vector is something that has

(A) Length
(B) Direction
(C) Neither of the above
(D) Both Length and Direction
2. A charge q is located at position r_{q} with respect to the origin. An observer is located at position r. The position of r relative to the position of the charge is
(A) $\mathbf{r}_{q}-\mathbf{r}$
(B) $r-r_{q}$
(C) $\mathbf{r}-\mathbf{r}_{q}$
(D) $\left|\mathbf{r}-\mathbf{r}_{q}\right|$
(E) None of the above

In all questions, choose the best answer. Numerical answers need only be accurate to at most 2 significant figures.

Good Luck
imperial College
London

1. A vector is something that has

(A) Length
(B) Direction
(C) Neither of the above
(D) Both Length and Direction

The correct answer is (D). This is essentially the definition of a vector

Imperial College

London
2. A charge q is located at position r_{q} with respect to the origin. An observer is located at position r. The position of r relative to the position of the charge is
(A) $\mathbf{r}_{q}-\mathbf{r}$
(B) $r-r_{q}$
(C) $\mathbf{r}-\mathbf{r}_{q}$
(D) $\left|\mathbf{r}-\mathbf{r}_{q}\right|$
(E) None of the above

The correct answer is (C). The answer must be a vector. Vector addition gives $\mathbf{r}=\mathbf{r}_{q}+\left(\mathbf{r}-\mathbf{r}_{q}\right)$ as shown in the diagram. You can also see which way to form the difference by ensuring that for $\mathbf{r}_{q} \rightarrow \mathbf{0}$ the result reduces to r.
3. A charge Q of 2 C is placed at the origin. A test charge q_{1} of +2 C is placed 1 m from the origin, while a second test charge q_{2} of -1 C is placed 2 m from the origin. The the forces on the two test charges due to the charge at O
(A) Have the same magnitude, but the first is repelled while the second is attracted
(B) Have the same magnitude, but the first is attracted while the second is repelled
(C) The magnitude of the force on q_{1} is twice that on q_{2}
(D) The magnitude of the force on q_{1} is four times that on q_{2}
(E) None of the above

Imperial College	
London	
February 200	

4. A charge q moves from rest under the influence of a uniform electric field $E=E_{x} \hat{\mathbf{x}}+E_{y} \hat{\mathbf{y}}$. The resulting motion is

(A) parabolic
(B) circular
(C) uniform acceleration in a straight line
(D) non-uniform acceleration in a straight line
(E) None of the above

Imperial College
 London

5. A dipole is formed along the x-axis by a charge $+q$ at $x=-d / 2$ and a charge $-q$ at $x=+d / 2$. The electric field at a point $C=(0, y) \equiv\left(0, \frac{d}{2} \tan \alpha\right)$ along the y-axis is
(A) $\frac{2 q \cos ^{3} \alpha}{\pi \epsilon_{0} d^{2}} \hat{\mathbf{i}}$
(B) $\frac{2 q \cos ^{2} \alpha \sin \alpha}{\pi \epsilon_{0} d^{2}} \hat{\mathbf{i}}$
(C) $\frac{2 q \cos ^{2} \alpha \sin \alpha}{\pi \epsilon_{0} d^{2}} \hat{\mathbf{j}}$
(D) 0
(E) None of the above

6. A charge Q of 2 C is placed at the origin. A test charge q_{1} of +2 C is placed 1 m from the origin, while a second test charge q_{2} of -1 C is placed 2 m from the origin. The the forces on the two test charges due to the charge at O
(A) Have the same magnitude, but the first is repelled while the second is attracted
(B) Have the same magnitude, but the first is attracted while the second is repelled
(C) The magnitude of the force on q_{1} is twice that on q_{2}
(D) The magnitude of the force on q_{1} is four times that on q_{2}
(E) None of the above

The correct answer is (E). The force is $\mathbf{F}=Q q_{i} /\left(4 \pi \epsilon_{o} r_{i}^{2}\right) \hat{\mathbf{r}}$ so the magnitude is proportional to q_{i} / r_{i}^{2}. For q_{1} this is $2 / 1^{2}=2$ while for q_{2} it is $1 / 2^{2}=1 / 4$ so the ratio of the magnitudes is 8 . q_{1} is repelled, and q_{2} is attracted.

Imperial College

London
5 February 2008

4. A charge q moves from rest under the influence of a uniform electric field $E=E_{x} \hat{\mathbf{x}}+E_{y} \hat{\mathbf{y}}$. The resulting motion is

(A) parabolic
(B) circular
(C) uniform acceleration in a straight line
(D) non-uniform acceleration in a straight line
(E) None of the above

The correct answer is (C). Solve separately the $\hat{\mathbf{x}}$ and $\hat{\mathbf{y}}$ equations of motion $m \frac{d v_{x}}{d t}=q E_{x} \Rightarrow x=\left(q E_{x} / 2 m\right) t^{2}$ and similarly $y=\left(q E_{y} / 2 m\right) t^{2}$ so $y=\left(E_{y} / E_{x}\right) x$. OR, better, invent a new coordinate system in which one axis is aligned with \mathbf{E} in which case the problem reduces to a 1-D problem along that axis. The answer (motion in a straight line) only holds for $\mathbf{v}(t=0)=\mathbf{0}$ but the trick (?) of using \mathbf{E} to define an axis makes the problem simpler if $\mathbf{v}(t=0) \neq \mathbf{0}$

Imperial College

London
5 February 2008
5. A dipole is formed along the x-axis by a charge $+q$ at $x=-d / 2$ and a charge $-q$ at $x=+d / 2$. The electric field at a point $C=(0, y) \equiv\left(0, \frac{d}{2} \tan \alpha\right)$ along the y-axis is
(A) $\frac{2 q \cos ^{3} \alpha}{\pi \epsilon_{0} d^{2}} \hat{\mathbf{i}}$
(B) $\frac{2 q \cos ^{2} \alpha \sin \alpha}{\pi \epsilon_{0} d^{2}} \hat{\mathbf{i}}$
(C) $\frac{2 q \cos ^{2} \alpha \sin \alpha}{\pi \epsilon_{0} d^{2}} \hat{\mathbf{j}}$
(D) 0
(E) None of the above

The correct answer is (A). The distance from each charge to C is $(d / 2) \sec \alpha$ so
$\mathbf{E}=\mathbf{E}_{1}+\mathbf{E}_{2}=\frac{q}{4 \pi \epsilon_{o} \frac{d^{2}}{4} \sec ^{2} \alpha}[(\cos \alpha \hat{\mathbf{i}}+\sin \alpha \hat{\mathbf{j}})-(-\cos \alpha \hat{\mathbf{i}}+\sin \alpha \hat{\mathbf{j}})]$
That is, the x-components add and the y-components cancel.
6. A dipole of dipole moment p is free to rotate. In the presence of an electric field, E , we've seen that there is a torque $\tau=\mathbf{p} \times \mathbf{E}$ on the dipole. For a uniform $\mathbf{E}=E \hat{\mathbf{i}}$
(A) the torque will be zero if \mathbf{p} is perpendicular to \mathbf{E}
(B) the dipole has a stable equilibrium with \mathbf{p} aligned with \mathbf{E}
(C) the dipole has a stable equilibrium with \mathbf{p} anti-aligned with \mathbf{E}
(D) both aligned and anti-aligned orientations are stable
(E) None of the above

Imperial College	7
London	5 February 2008

7. A square with sides of length 3 m lies in the $x-y$ plane. A uniform electric field is present such that $E=(3.0,0.0,-1.0) \mathrm{V} / \mathrm{m}$. Taking $+\hat{\mathbf{k}}$ to be the orientation of the normal to the square, the electric flux Φ_{E} through the square in Vm is
(A) 9.0
(B) -9.0
(C) 18.0
(D) $-9.0 \hat{\mathbf{k}}$
(E) None of the above
8. A square with sides of length 3 m lies in the $x-y$ plane, with a corner at the origin and sides aligned with the $x-y$ axes. An electric field is present such that $\mathbf{E}=(3.0 z, 0.0,-1.0 y) \mathbf{V} / \mathbf{m}$. Taking $+\hat{\mathbf{k}}$ to be the orientation of the normal to the square, the electric flux Φ_{E} through the square in Vm is
(A) -9.0
(B) -27.0
(C) - 13.5
(D) $-9.0 y$
(E) None of the above
9. A square with sides of length $3 \mathbf{m}$ lies in the $x-y$ plane, with a corner at the origin and sides aligned with the $x-y$ axes. An electric field is present such that $\mathbf{E}=(3.0 z, 0.0,-1.0 \mathrm{y}) \mathbf{V} / \mathbf{m}$. Taking $+\hat{\mathbf{k}}$ to be the orientation of the normal to the square, the electric flux Φ_{E} through the square in Vm is
(A) -9.0
(B) -27.0
(C) -13.5
(D) $-9.0 y$
(E) None of the above

The correct answer is (C). Taking E.dA gives (3.0z, 0, $-1.0 y$) $\cdot d x d y \hat{\mathbf{k}}$. So $\Phi_{E}=\iint_{S} \mathbf{E} \cdot \mathbf{d} \mathbf{A}=\int_{y=0}^{3} \int_{x=0}^{3}-y d x d y=[-3]\left[y^{2} / 2\right]_{0}^{3}=-13.5$
9. A charge Q is placed at $(0.5,0.0,0.0)$ and surrounded by an ellipsoidal surface of the form $x^{2}+2 y^{2}+z^{2}=1$. The electric flux through the surface is
(A) 0
(B) $Q /\left(4 \pi \epsilon_{0}\right)$
(C) $\sqrt{6} Q /\left(4 \pi \epsilon_{0}\right)$
(D) None of the above

Imperial College

London
5 February 2008
10. A charge Q is placed at $(0.5,0.0,0.0)$. A surface is formed by the combination of an ellipsoidal surface of the form $x^{2}+2 y^{2}+z^{2}=1$ together with a spherical surface of radius 0.1 m that it centred around the charge. The electric flux through this surface is

(A) 0
(B) $2 Q / \epsilon_{0}$
(C) $-Q / \epsilon_{0}$
(D) This question is too hard
(E) None of the above
9. A charge Q is placed at $(0.5,0.0,0.0)$ and surrounded by an ellipsoidal surface of the form $x^{2}+2 y^{2}+z^{2}=1$. The electric flux through the surface is
(A) 0
(B) $Q /\left(4 \pi \epsilon_{0}\right)$
(C) $\sqrt{6} Q /\left(4 \pi \epsilon_{0}\right)$
(D) None of the above

The correct answer is (D). Gauss's Law says $\oiint_{S} \mathbf{E} \cdot \mathbf{d A}=Q_{e n c l} / \epsilon_{o}$ for ANY surface where $Q_{e n c l}$ is the charge enclosed by that surface. It is easy to verify that in this case Q lies inside the ellipsoid, therefore $\Phi_{E}=Q_{e n c l} / \epsilon_{o}$.

Imperial College
5 February 2008
London
10. A charge Q is placed at $(0.5,0.0,0.0)$. A surface is formed by the combination of an ellipsoidal surface of the form $x^{2}+2 y^{2}+z^{2}=1$ together with a spherical surface of radius 0.1 m that it centred around the charge. The electric flux through this surface is

(A) 0
(D) This question is too hard
(B) $2 Q / \epsilon_{0}$
(C) $-Q / \epsilon_{0}$
(E) None of the above

The correct answer is (A). Gauss's Law says $\oiint_{S} \mathbf{E} \cdot \mathbf{d A}=Q_{\text {encl }} / \epsilon_{0}$ for ANY surface where $Q_{\text {encl }}$ is the charge enclosed by that surface. The surface we've formed does not contain any charge. The diagram shows the volume it encloses and the outward normal.

