Electricity \& Magnetism, Problem Sheet 1 (Year 1)

1) Two identical charges Q are fixed and separated by a distance $2 a$ on the y-axis. Their positions are $(0, \mathrm{a}, 0)$ and $(0,-\mathrm{a}, 0)$ respectively. What is the electric potential φ at the position $(x, 0,0)$ on the x -axis.

If $\mathrm{x} \ll \mathrm{a}$, use a Taylor expansion to show that

$$
\begin{equation*}
\varphi=\frac{\mathrm{Q}}{4 \pi \varepsilon_{0}}\left(\frac{2}{\mathrm{a}}-\frac{\mathrm{x}^{2}}{\mathrm{a}^{3}}\right) \tag{1}
\end{equation*}
$$

when terms proportional to higher powers of x are neglected.
Derive an expression for the electric field at position $(\mathrm{x}, 0,0)$ for $\mathrm{x} \ll \mathrm{a}$.
A body with mass m and charge q is free to move along the x axis. Show that the equation of motion of the body is

$$
\begin{equation*}
\mathrm{m} \frac{\mathrm{~d}^{2} \mathrm{x}}{\mathrm{dt}^{2}}=\frac{\mathrm{Qqx}}{2 \pi \varepsilon_{0} \mathrm{a}^{3}} \tag{2}
\end{equation*}
$$

The body is initially at rest at $\mathrm{x}=\mathrm{b}(\mathrm{b} \ll \mathrm{a})$. Describe the subsequent motion of the body if (i) both Q and q are positive (ii) Q and q have opposite signs. Does x become larger than a in either case? If so, does equation (2) become invalid, and what is the final velocity of the body?
2) The potential at position \mathbf{r} due to an electric dipole \mathbf{M} is

$$
\varphi(\mathbf{r})=\frac{\mathbf{M} \cdot \mathbf{r}}{4 \pi \varepsilon_{0} \mathrm{r}^{3}} .
$$

If $\mathbf{M}=M_{x} \mathbf{i}+M_{y} \mathbf{j}+\mathrm{M}_{\mathrm{z}} \mathbf{k}$ and $\mathbf{r}=\mathrm{xi}+\mathrm{y} \mathbf{j}+\mathrm{z} \mathbf{k}$, satisfy yourself that the potential can be written in the form

$$
\varphi=\frac{\mathrm{M}_{\mathrm{x}} \mathrm{x}+\mathrm{M}_{\mathrm{y}} \mathrm{y}+\mathrm{M}_{\mathrm{z}} \mathrm{z}}{4 \pi \varepsilon_{0}\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{3 / 2}}
$$

Show that

$$
\begin{aligned}
& \frac{\partial \varphi}{\partial \mathrm{x}}=\frac{1}{4 \pi \varepsilon_{0}}\left\{\frac{\mathrm{M}_{\mathrm{x}}}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{3 / 2}}-\frac{3\left(\mathrm{M}_{\mathrm{x}} \mathrm{x}+\mathrm{M}_{\mathrm{y}} \mathrm{y}+\mathrm{M}_{\mathrm{z}} \mathrm{z}\right) \mathrm{x}}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{5 / 2}}\right\} \\
& \frac{\partial \varphi}{\partial \mathrm{y}}=\frac{1}{4 \pi \varepsilon_{0}}\left\{\frac{\mathrm{M}_{\mathrm{y}}}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{3 / 2}}-\frac{3\left(\mathrm{M}_{\mathrm{x}} \mathrm{x}+\mathrm{M}_{\mathrm{y}} \mathrm{y}+\mathrm{M}_{\mathrm{z}} \mathrm{z}\right) \mathrm{y}}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{/ 2}}\right\} \\
& \frac{\partial \varphi}{\partial \mathrm{z}}=\frac{1}{4 \pi \varepsilon_{0}}\left\{\frac{\mathrm{M}_{\mathrm{z}}}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{3 / 2}}-\frac{3\left(\mathrm{M}_{\mathrm{x}} \mathrm{x}+\mathrm{M}_{\mathrm{y}} \mathrm{y}+\mathrm{M}_{\mathrm{z}} \mathrm{z}\right) \mathrm{z}}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{5 / 2}}\right\}
\end{aligned}
$$

Hence show that the electric field at position \mathbf{r} due to the dipole is given by

$$
\mathbf{E}=\frac{3(\mathbf{M} . \mathbf{r}) \mathbf{r}-\mathbf{M r}^{2}}{4 \pi \varepsilon_{0} \mathrm{r}^{5}}
$$

3) A point charge Q_{0} lies at the centre of a conducting spherical shell. The inner radius of the conducting shell is R_{1} and the outer radius is R_{2}.

Suppose that a charge Q_{1} is uniformly distributed over the inner surface of the shell and a charge Q_{2} is uniformly distributed over the outer surface of the shell. Derive expressions for the electric field (i) inside the shell $\left(r<R_{1}\right)$ (ii) within the conductor ($\mathrm{R}_{1}<\mathrm{r}<\mathrm{R}_{2}$), and (iii) outside the shell ($\mathrm{r}>\mathrm{R}_{2}$), where r is the radial distance from the charge Q_{0}.

The electric field has to be zero inside a conducting medium. What does this tell us about the relationship between Q_{0} and Q_{1} ?

If $Q_{2}=Q_{0}, Q_{1}=-Q_{0}$, and Q_{0} is positive, sketch a graph of electric field as a function of radius r.

Also for $\mathrm{Q}_{2}=\mathrm{Q}_{0}, \mathrm{Q}_{1}=-\mathrm{Q}_{0}$, derive the potential as a function of r and sketch the potential.

