1st year Electricity and Magnetism, Tony Bell

Classwork 4 - ${ }^{\text {rd }}$ March 2005

1) In the lectures (section E.4) we derived an exact expression for the magnitude of the magnetic field $|\mathbf{B}|=\mu_{0} \mathrm{Ia}^{2} / 2\left(\mathrm{x}^{2}+\mathrm{a}^{2}\right)^{3 / 2}$ on the axis at a distance x from a circular current loop of radius a carrying a current I. Section E. 5 gave an expression for the magnetic field in the dipole approximation $\mathbf{B}=\left(\mu_{0} / 4 \pi r^{3}\right)\left(\mathbf{M}_{\mathrm{B}}-3\left(\mathbf{M}_{\mathrm{B}} \cdot \mathbf{r}\right) \mathbf{r} / \mathrm{r}^{2}\right)$ at a position \mathbf{r} relative to a loop with dipole moment $\mathbf{M}_{\mathrm{B}}\left(\left|\mathbf{M}_{\mathrm{B}}\right|=\mathrm{I} \pi \mathrm{a}^{2}\right.$ for a loop of radius a carrying a current I).
(i) Sketch a graph of $|\mathbf{B}|$ against distance x from the loop giving curves for both the exact value and the value in the dipole approximation.
(ii) How large must x be for the dipole and exact values to agree to better than 10% ?
2) A coaxial cable consists of two thin cylinders of radius R_{1} and R_{2} respectively ($\mathrm{R}_{2}>\mathrm{R}_{1}$). The inner cylinder carries a current I in the positive x direction. The outer cylinder carries a current with the same magnitude I but in the opposite (-x) direction. Use Ampere's law to derive the magnetic field a distance r from the centres of the cylinders for (i) $r<R_{1}$ (ii) $R_{1}<r<R_{2}$ (iii) $r>R_{2}$. Sketch a plot of magnetic field versus radius r for the case in which $I=2 A m p, R_{1}=5 \mathrm{~mm}$ and $R_{2}=10 \mathrm{~mm}$. $\left(\mu_{0}=4 \pi \times 10^{-7} \mathrm{Hm}^{-1}\right)$
3) The highest energy cosmic rays arriving at the earth have energies of $3 \times 10^{20} \mathrm{eV}$. Assuming that these cosmic rays are protons, calculate their Lorentz factor, their relativistic mass (in kg), and their momentum. They must have travelled distances less than about 20 Mpc , otherwise they would lose energy by interacting with the cosmic microwave background. If the magnetic field between galaxies is typically 10^{-13} Tesla, can their direction of arrival be expected to give information about the origin of high energy cosmic rays?
$1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$
Mass of proton $=1.67 \times 10^{-27} \mathrm{~kg}$
Charge on a proton $=1.6 \times 10^{-19}$ Coulomb
Speed of light $=3 \times 10^{8} \mathrm{~ms}^{-1}$
Force on a proton moving with velocity \mathbf{v} in a magnetic field \mathbf{B} is $\mathrm{ev} \wedge \mathbf{B}$
$1 \mathrm{Mpc}=3.1 \times 10^{22} \mathrm{~m}$
