Numbers in italics refer to the Exercise number in the 12th Edition of Young \& Freedman's "University Physics". Answers to odd-numbered questions are at the back of the book. Some useful formulae are given at the end of this sheet. This is a bit long, and we might not cover the material for the last question in time, but it is the last Classwork apart from the final Quiz on Magnetism.

1. [28.36] The figure shows, in cross section, several conductors that carry currents through the plane of the figure. The currents have the magnitudes $I_{1}=$ $4.0 \mathrm{~A}, I_{2}=6.0 \mathrm{~A}$, and $I_{3}=2.0 \mathrm{~A}$, and the directions shown. Four paths, labeled a through d, are shown. What is the line integral $\oint \mathbf{B} \cdot \mathbf{d} \ell$ for each path? Each integral involves going around the path in the counterclockwise direction. Explain your answers.
2. [28.74] A conductor is made in the form of a hollow cylinder with inner and outer radii a and b, respectively. It carries a current I, uniformly distributed over its cross section. Derive expressions for the magnitude of the magnetic field in the regions a) $r<a$; b) $a<r<b ; c) r>b$. [You should also indicate on a

Figure from Problem 28.36 sketch the direction of the magnetic field.]
3. [28.49] A long solenoid with 60 turns of wire per centimeter carries a current of 0.15 A . The wire that makes up the solenoid is wrapped around a solid core of silicon steel ($K_{m}=5200$). (The wire of the solenoid is jacketed with an insulator so that none of the current flows into the core). a) For a point inside the core, find the magnitudes of i) the magnetic field \mathbf{B}_{0} due to the solenoid current, ii) the magnetization \mathbf{M}, and iii) the total magnetic field \mathbf{B}. b) In a sketch of the solenoid and core, show the directions of the vectors $\mathbf{B}, \mathbf{B}_{0}$, and \mathbf{M} inside the core.
4. A square loop of wire, with edges 20 cm , lies in the $x-y$ plane. A uniform magnetic field $\mathbf{B}=B(t) \hat{\mathbf{z}}$ varies with time according to $B(t)=10^{-3} e^{-t / 3} \mathrm{~T}$, where t is time in seconds. a) Find the rate of change of magnetic flux through the loop, $d \Phi_{B} / d t$. b) By equating this to the negative of the electromotive force \mathcal{E}, show on a sketch the direction in which current will be driven around the loop. c) If the resistance of the loop is 100Ω, find the current in the loop as a function of time.
Some possibly useful information and formulae:

$$
\begin{array}{rlrlll}
\oint \mathbf{B} \cdot \mathbf{d} \boldsymbol{\ell} & =\mu_{0} l_{\text {encl }} & B_{X} & =\frac{\mu_{0} l a^{2}}{2\left(x^{2}+a^{2}\right)^{3 / 2}} & & \\
& =\mu_{0} \iint \mathbf{j} \cdot \mathbf{d A} & \mu & =K_{m} \mu_{0}=\left(\chi_{m}+1\right) \mu_{0} & \text { Symbol } & \text { Value } \\
& =\frac{\mu_{0} l}{2 \pi r} & \mathbf{B} & =\mathbf{B}_{0}+\mu_{0} \mathbf{M}=K_{m} \mathbf{B}_{0} & \mu_{0} & 4 \pi \times 10^{-7} \\
B & \frac{d \Phi_{B}}{d t} & =-\mathcal{E} & & \mathrm{Tm} / \mathbf{A} \\
B & =\mu_{0} n l & & & &
\end{array}
$$

