Numbers in italics refer to the Exercise number in the 12th Edition of Young \& Freedman's "University Physics". Answers to odd-numbered questions are at the back of the book. Some useful formulae are given at the end of this sheet (see overleaf).

1. [23.7] A point charge $Q=+4.60 \mu \mathrm{C}$ is held fixed at the origin. A second point charge $q=+1.20 \mu \mathrm{C}$ with mass of $2.80 \times 10^{-4} \mathrm{~kg}$ is placed on the $x$-axis, 0.250 m from the origin. a) What is the electric potential energy $U$ of the pair of charges? (Take $U$ to be zero when the charges have infinite separation.) b) The second point charge is released from rest. What is its speed when its distance from the origin is i) 0.500 m ? ii) 5.00 m ?
2. [23.14] Identical point charges $q=+5.00 \mu \mathrm{C}$ are placed at opposite corners of a square. The length of each side of the square is 0.200 m . A point charge $q_{0}=$ $-2.00 \mu \mathrm{C}$ is placed at one of the empty corners. How much work is done on $q_{0}$ by the electric force when $q_{0}$ is moved to the other empty corner?
3. [23.32] A total electric charge of 3.50 nC is distributed uniformly over the surface of a metal sphere with a radius of 24.0 cm . If the potential is zero at a point at infinity, find the value of the potential at the following distances from the centre of the sphere: a) 48.0 cm ; b) 24.0 cm ; c) 12.0 cm .
4. An electric dipole consisting of charges $\pm q$ of dipole moment $\mathbf{p} \equiv q d \hat{z}$ is located at the origin. Given that the electric potential for $|\mathbf{r}| \gg d$ is given by

$$
V \approx \frac{q d z}{4 \pi \epsilon_{0} r^{3}} \equiv \frac{\mathbf{p} \cdot \mathbf{r}}{4 \pi \epsilon_{0} r^{3}}
$$

differentiate this expression with respect to $x, y$, and $z$ to show that the electric field in this far-field limit is

$$
\mathbf{E}=\frac{1}{4 \pi \epsilon_{0}}\left(\frac{3(\mathbf{p} \cdot \mathbf{r}) \mathbf{r}}{r^{5}}-\frac{\mathbf{p}}{r^{3}}\right)
$$

Remember ISEE: Identify the relevant concepts, including the target variable (what you need to find); Set Up the problem, usually with the help of a sketch; Execute the calculation needed to find the value of the target variable; finally Evaluate your answer: does it correspond to the symmetry of the problem, does the answer seem reasonable?

Some possibly useful information and formulae:

$$
\begin{array}{rllll}
V & =\frac{q}{4 \pi \epsilon_{0} r} \text { for a point charge } q \text { at the origin } & & \\
\mathbf{r} & =x \hat{\mathbf{x}}+y \hat{\mathbf{y}}+z \hat{\mathbf{z}} & \text { Symbol } & \text { Value } & \text { Units } \\
|\mathbf{r}| & \equiv(\mathbf{r} \cdot \mathbf{r})^{1 / 2}=\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2} & \epsilon_{0} & 8.85 \times 10^{-12} & \mathrm{C}^{2} / \mathrm{N} \mathrm{~m}^{2} \\
\mathbf{E} & =-\frac{\partial V}{\partial x} \hat{\mathbf{x}}-\frac{\partial V}{\partial y} \hat{\mathbf{y}}-\frac{\partial V}{\partial z} \hat{\mathbf{z}} & 1 / 4 \pi \epsilon_{0} & 8.99 \times 10^{9} & \mathrm{~N} \mathrm{~m}^{2} / \mathrm{C}^{2}
\end{array}
$$

