Numbers in italics refer to the Exercise number in the 12th Edition of Young \& Freedman's "University Physics". Answers to odd-numbered questions are at the back of the book. Do refresh your knowledge of vectors.

1. [21.7] Two small plastic spheres are given positive electrical charges. When they are 15.0 cm apart, the repulsive force between them has magnitude 0.220 N . What is the charge on each sphere (a) if the two charges are equal? (b) if one sphere has four times the charge of the other?
2. [21.28] An electron is released from rest in a uniform electric field. The electron accelerates vertically upward, traveling 4.50 m in the first $3.00 \mu \mathrm{~s}$ after it is released. (a) What are the magnitude and direction of the electric field? (b) Are we justified in ignoring the effects of gravity? Justify your answer quantitatively.
3. [21.79] Three identical point charges q are placed at each of three corners of a square of side L. Find the magnitude and direction of the net force on a point charge $-3 q$ placed (b) at the vacant corner of the square. Draw a free-body diagram showing the fores exerted on the $-3 q$ charge by each of the other three charges, together with the resultant net force. [You do not need to do part (a) of this question, which is to find the net force if the charge $-3 q$ is placed at the centre of the square, but you are free to do this if you wish!]
4. [21.96] Positive charge Q is uniformly distributed around a semicircular ring of radius a that lies in the upper half-of the $x-y$ plane with its centre of curvature at the origin. [i.e., half of a circular ring of charge.] Find the electric field (magnitude and direction) at the origin. [Hint: Divide the ring into pieces of elemental length a d θ and charge $d Q$. Find the charge per unit length around the semicircle. Then use symmetry and superposition to find \mathbf{E}. Check that your answer makes sense.]
5. In lecture we saw that an electric dipole lying along the x-axis with a charge $+q$ at $x=-d / 2$ and a charge $-q$ at $x=d / 2$ has a field at a point $x=X, y=0$ with $X<-d / 2$ given by

$$
\mathbf{E}=\frac{q}{4 \pi \epsilon_{0}}\left[\frac{-1}{\left(X+\frac{d}{2}\right)^{2}}+\frac{1}{\left(X-\frac{d}{2}\right)^{2}}\right] \hat{\mathbf{x}}
$$

Consider points X which are a long way from the dipole, so that the denominators can be written in terms of $X\left(1 \pm \frac{d}{2 X}\right)$ with $|d / 2 X| \ll 1$. Use these to expand the expressions in \mathbf{E} using the binomial theorem to show that

$$
E_{x}=\frac{q d}{2 \pi \epsilon_{0} X^{3}}
$$

The numerator is the dipole moment $p \equiv q d$. Does this make sense in terms of direction of \mathbf{E} and dependence on X ? [Hint: Remember that $X<0$. Why doesn't the field fall off as $1 / X^{2}$?]

Remember ISEE: Identify the relevant concepts, including the target variable (what you need to find); Set Up the problem, usually with the help of a sketch; Execute the calculation needed to find the value of the target variable; finally Evaluate your answer: does it correspond to the symmetry of the problem, does the answer seem reasonable?

Some possibly useful information and formulae are on the next page.

$$
\begin{gathered}
\mathbf{F}_{1 \text { on2 } 2}=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}}{\left|\mathbf{r}_{2}-\mathbf{r}_{1}\right|^{2}} \frac{\mathbf{r}_{2}-\mathbf{r}_{1}}{\left|\mathbf{r}_{2}-\mathbf{r}_{1}\right|} \\
\mathbf{E}=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{\left|\mathbf{r}-\mathbf{r}_{q}\right|^{2}} \frac{\mathbf{r}-\mathbf{r}_{q}}{\left|\mathbf{r}-\mathbf{r}_{q}\right|} \\
\boldsymbol{\tau}=\mathbf{p} \times \mathbf{E}
\end{gathered}
$$

Principle of Superposition: \mathbf{F} or \mathbf{E} due to collection of charges is equal to the sum over all the charges of the \mathbf{F} or \mathbf{E} due to each individual charge.

Symbol	Value	Units
ϵ_{0}	8.85×10^{-12}	$\mathrm{C}^{2} / \mathrm{N} \mathrm{m}^{2}$
$1 / 4 \pi \epsilon_{0}$	8.99×10^{9}	$\mathrm{~N} \mathrm{~m}^{2} / \mathrm{C}^{2}$
e	1.60×10^{-19}	C
m_{e}	9.11×10^{-31}	kg
g	9.81	$\mathrm{~m} / \mathrm{s}^{2}$

