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4.3 Dielectrics

4.3.1 Motivitation

Young & Freedman devote Chapter 24 to a dis-
cussion of capacitors and dielectrics. That dis-
cussion is quite complete. It defines the general
concepts of capacitance as the capacity to store
charge (C = Q/V ; the higher the capacitance
the more charge is stored for a given voltage).
Various examples of plane parallel plate capac-
itors, spherical capacitors, etc., are considered,
and the relationship between the configuration,
the electric field, the electric potential, and also
the energy stored in the system are all carefully
done.

They then introduce in Sections 24.4 and
24.6 a dielectric medium into the problem. They
show how some media, in the presence of an ex-
ternal electric field, become polarised, resulting
in some induced charge appearing at their sur-
face, and hence reducing the electric field within
them. Since the potential V is the line integral
of the electric field, the potential is likewise re-
duced. Thus, for a given charge Q , a capacitor
with a dielectric will have a lower voltage, and
hence a higher capacitance.

The purpose of this brief handout is NOT
to replicate the material in the book. However,
there are many ways of looking at this subject,
and equally many bits of notation. Below, I try to
relate all of these and cast them in terms of the
notation used in the book. Table 1 summarises
the main results and the relationship between
the various quantities. You don’t need to know
most of this material, but it might be helpful now
or in the future.

4.3.2 Dielectric Basics

A dielectric is a material in which the molecules
can be polarised in response to an externally ap-
plied electric field. The basic concepts are de-
picted in Figure 1, which shows a parallel plate
capacitor charged with a free charge density σo

that in vacuum gives rise to an electric field Eo =
σo/εo in the capacitor. If a dielectric medium is
inserted in the plates, the external field causes
the dipolar molecules within the medium to po-

larise, with the + ends attracted to the −σo side
of the capacitor and the − ends attracted to the
+σo plate. This results in a charge ±σi appear-
ing at the edges of the dielectric; this is said to be
the induced charge density. Since the molecules
are not totally free, the extent to which the dielec-
tric medium polarises depends on its properties
and is proportional to the external electric field.

The induced charge density ±σi gives rise to
a polarisation electric field Epol which acts in the
opposite direction to Eo , leading to a reduction
in the electric field inside the capacitor from its
vacuum value Eo to E = Eo/εr where εr is the
relative permittivity of the dielectric.

4.3.3 Formulation

It is straightforward now to formulate all these
concepts into a set of mathematical relations.
Firstly, we can relate the various electric fields
in the problem. As described above, the field
inbetween the plates is the (vector) sum of the
vacuum field and the polarisation electric field:

E = Eo + Epol (1)

Since a pair of charge sheets ±σ give rise to
an electric field σ/εo , we can re-write (1) in terms
of the charge densities:

E =
σo − σi

εo
x̂ (2)

where x̂ points to the right in Figure 1. You can
use this equation to find the size of the induced
charge density.

At the molecular level, the individual
molecules have dipole moments p ≡ qd which
point from the negative end to the positive end
of the molecule. So the dipole moments tend to
point from left to right (−σi to +σi) in Figure 1.
The induced charge densities ±σi are just the
ends of the molecules at the edge of the slab.
We can add up all the little dipoles to define a
polarisation P by

P =
∑

molecules i

Ni < p > (3)
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Figure 1: (left) Vacuum capacitor with a free charge σo leading to a vacuum electric field Eo .
When a dielectric is inserted within the space, it polarises, leading to a surface charge ±σi be-
ing induced at its edges. The resulting polarisation electric field Epol reduces the total electric field
within the capacitor by a factor εr , the relative permittivity of the material.

where Ni is the number of dipoles per unit vol-
ume. Within the dielectric, the positive and neg-
ative ends of the dipoles cancel one another, so
P only manifests itself for those molecules within
d or so of the edge. Then Equation 3 counts up
that charge, so we have

P = −εoEpol = −σi x̂ (4)

where the minus sign enters because the p’s
point from negative to positive ends of each
dipole, while electric fields point from positive to
negative charges.

The extent to which all the dipoles line up de-
pends on the strength of the electric field E within
the dielectric, i.e. P ∝ E so let’s write

P ≡ εoχeE (5)

where χe is the susceptibility of the medium to
be polarised.

4.3.4 Electric Displacement D

The problem with all the above treatment is that
it requires us to look at the microscopic details
of the dielectric. In practice, when we charge up
a capacitor is it easy to measure the charging

current and hence measure the amount of free
charge σo we have put on the plates. Is there a
way to hide the details of the dielectric? You bet.

Let’s define a vector D that will operate in
Gauss’s Law and can be related to the free
charges of the system, i.e.,	

D · dA = Qfree (6)

We have absorbed the εo into D, which is known
as the Displacement Vector. In our case of a
parallel plate capacitor, we know that Qfree =
σoA = εo |Eo |A . Putting this all into Equations (1-
5) leads to

D = εoEo (7)

= εo
(
E − Epol

)
(8)

= εoE + P (9)

= εo (1 + χe) E (10)

= εoεrE (11)

so that the relative permittivity εr is 1 plus the
susceptibility. Equations 7–11 are a translation
table amongst the various descriptions of the
system. If the medium is not susceptible to being
polarised, χe = 0, εr = 1, D = εoE and, by virture
of Gauss’s Law (6), E = Eo and is due to the free
charge on the plates.
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Table 1: Quantities, symbols, definitions, and main results
Quantity Y&F (or def’n) Description
εr K Dielectric constant
ε Kεo Permittivity (we won’t use this, but you

might see it elsewhere)
χe K − 1 ≡ εr − 1 Susceptibility
D εoKE ≡ εoεrE Displacement vector; this is our pri-

mary addition to Y&F, and an impor-
tant one

P
∑

molecules i

Ni < p > Polarisation due to molecular dipole
moments p

P −εoEpol Defines P in terms of the electric field
due to the polarised dipoles

P εoχeE Defines susceptibility
D εoE + P Relates D, E, and P�

D · dA = Qfree
�
εoKE · dA = Qfree Gauss’s Law

4.3.5 Dielectrics and Capacitors

Since the electric field is reduced by εr when a
dielectric is present, the voltage V between the
plates is also reduced for the same free charge
σoA = Qfree from Vo to V = Vo/εr . Thus

C =
Qfree

V
=

Qfree

Vo/εr

= εr
Qfree

Vo
≡ εrCo = εrεo

A
d

(12)

(the d here is the separation between the plates
of the capacitor).

The electric energy can be calculated by
charging the capacitor, starting from zero charge
and voltage, and transfering charge from one
plate to the other. The result shows that the en-
ergy density within the plates can be written

uE =
1
2
εoεrE2 (13)

Thus uE is larger than the quantity 1
2εoE2 one

might have expected from just considering the
electric field itself. This is essentially because
some energy is required to polarise the dielec-
tric, and so some energy is stored in the dipole
alignment. However, since E = Eo/εr , the total
energy is less in the case of a dielectric than in
a vacuum capacitor; it takes less total energy to
store the same charge - so it’s a better capacitor.

4.3.6 Epilogue

The basic operation of a dielectric is quite sim-
ple, and illustrated in Figure 1. Unfortunately,
there are many ways of looking at this problem,
which introduce a plethora of symbols and defini-
tions, most of which are summarised in Table 1.
Interestingly, it is possible to pass from the vac-
uum form of an equation (e.g., that for the electric
field energy density) to the form in the presence
of a dielectric merely by replacing εo (the permit-
tivity of a vacuum) by εrεo ≡ ε (the permittivity of
the medium).

For our purposes, there are really only a cou-
ple of things you need to know:

1. Dielectrics reduce the electric field and
voltage by a factor of 1/εr from their vac-
uum values.

2. The displacement vector D ≡ εoεrE

3.
�

D · dA = Qfree is Guass’s Law and re-
lates the free charges to the displacement
vector.

The rest of the material here is for your back-
ground, and for you to consult when you run
across a book or problem that uses another ap-
proach.
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