First-Year Mathematics

1. We solve the equation of motion of a classical undamped harmonic oscillator with natural frequency ω_{0},

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+\omega_{0}^{2} x=0 \tag{1}
\end{equation*}
$$

with a trial solution $x(t)=e^{m t}$. Substituting this expression into the equation yields

$$
\begin{equation*}
m^{2} e^{m t}+\omega_{0}^{2} e^{m t}=\left(m^{2}+\omega_{0}^{2}\right) e^{m t}=0 \tag{2}
\end{equation*}
$$

The characteristic equation is

$$
\begin{equation*}
m^{2}+\omega_{0}^{2}=\left(m-i \omega_{0}\right)\left(m+i \omega_{0}\right)=0 \tag{3}
\end{equation*}
$$

which has roots $m_{1}=-i \omega_{0}$ and $m_{2}=i \omega_{0}$. The general solution to the Eq. (1) is

$$
\begin{equation*}
x(t)=A e^{-i \omega_{0} t}+B e^{i \omega_{0} t}, \tag{4}
\end{equation*}
$$

where A and B are determined by the initial conditions,

$$
\begin{equation*}
x(0)=x_{0},\left.\quad \frac{d x}{d t}\right|_{t=0}=x_{0}^{\prime} . \tag{5}
\end{equation*}
$$

Substitution of Eq. (4) into the initial conditions produces

$$
\begin{align*}
x(0) & =A+B=x_{0}, \tag{6}\\
\left.\frac{d x}{d t}\right|_{t=0} & =-i \omega_{0} A+i \omega_{0} B=x_{0}^{\prime} . \tag{7}
\end{align*}
$$

After dividing both sides of Eq. (7) by ω_{0} and multiplying both sides by i, we obtain the two simultaneous equations for A and B in the form:

$$
\begin{align*}
& A+B=x_{0} \tag{8}\\
& A-B=\frac{i x_{0}^{\prime}}{\omega_{0}} \tag{9}
\end{align*}
$$

These equations are easily solved and we obtain

$$
\begin{align*}
A & =\frac{1}{2}\left(x_{0}+\frac{i x_{0}^{\prime}}{\omega_{0}}\right) \tag{10}\\
B & =\frac{1}{2}\left(x_{0}-\frac{i x_{0}^{\prime}}{\omega_{0}}\right) . \tag{11}
\end{align*}
$$

Thus, the solution to the initial-value problem is

$$
\begin{align*}
x(t) & =\frac{1}{2}\left(x_{0}+\frac{i x_{0}^{\prime}}{\omega_{0}}\right) e^{-i \omega_{0} t}+\frac{1}{2}\left(x_{0}-\frac{i x_{0}^{\prime}}{\omega_{0}}\right) e^{i \omega_{0} t} \\
& =x_{0}\left(\frac{e^{i \omega_{0} t}+e^{-i \omega_{0} t}}{2}\right)-\frac{i x_{0}^{\prime}}{\omega_{0}}\left(\frac{e^{i \omega_{0} t}-e^{-i \omega_{0} t}}{2}\right) \\
& =x_{0}\left(\frac{e^{i \omega_{0} t}+e^{-i \omega_{0} t}}{2}\right)+\frac{x_{0}^{\prime}}{\omega_{0}}\left(\frac{e^{i \omega_{0} t}-e^{-i \omega_{0} t}}{2 i}\right) \\
& =x_{0} \cos \omega_{0} t+\frac{x_{0}^{\prime}}{\omega_{0}} \sin \omega_{0} t . \tag{12}
\end{align*}
$$

2. To obtain the general solution of

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+(E-V) y=0 \tag{13}
\end{equation*}
$$

we attempt a solution of the form $y(x)=\mathrm{e}^{m x}$ and choose m by the requirement that this expression is a solution. Substituting into Eq. (13) yields

$$
\begin{equation*}
\left(m^{2}+E-V\right) \mathrm{e}^{m x}=0 \tag{14}
\end{equation*}
$$

The values of m are thus given by

$$
\begin{equation*}
m_{1}=\sqrt{V-E}, \quad m_{2}=-\sqrt{V-E} \tag{15}
\end{equation*}
$$

Notice that if $V>E$, then m_{1} and m_{2} are real, which if $V<E$, the m_{1} and m_{2} are imaginary (and complex conjugates of one another). In either case, the general solution to Eq. (13) is

$$
\begin{equation*}
\psi(x)=A \mathrm{e}^{m_{1} x}+B \mathrm{e}^{m_{2} x} \tag{16}
\end{equation*}
$$

where A and B are constants to be determined by auxiliary conditions, of which there must be two. If m_{1} and m_{2} are real, then the general solution is combination of exponentially growing and decaying solutions, while if m_{1} and m_{2} are imaginary, the general solution is a combination of oscillating solutions.
3. For each of the differential equations given, two solutions may be found by first determining the roots of the characteristic equation and then following the procedure outlined in Section 8.3.
(a) $y^{\prime \prime}+3 y^{\prime}+2 y=0$. Comparing with the standard form (8.22) we identify

$$
\begin{equation*}
a=1, \quad b=3, \quad c=2 . \tag{17}
\end{equation*}
$$

The roots of the characteristic equation are then given by

$$
\begin{equation*}
m=\frac{1}{2}(-3 \pm \sqrt{9-8})=\frac{1}{2}(-3 \pm 1)=-1,-2 \tag{18}
\end{equation*}
$$

This equation is of the type in Case I, so the two solutions are obtained as

$$
\begin{equation*}
y_{1}(x)=\mathrm{e}^{-x}, \quad y_{2}(x)=\mathrm{e}^{-2 x} \tag{19}
\end{equation*}
$$

(b) $y^{\prime \prime}-4 y^{\prime}+5 y=0$. Comparing with the standard form (8.22) we identify

$$
\begin{equation*}
a=1, \quad b=-4, \quad c=5 \tag{20}
\end{equation*}
$$

The roots of the characteristic equation are then given by

$$
\begin{equation*}
m=\frac{1}{2}(4 \pm \sqrt{16-20})=\frac{1}{2}(4 \pm 4 i)=2 \pm 2 i \tag{21}
\end{equation*}
$$

This equation is of the type in Case III, so the two solutions are obtained as

$$
\begin{equation*}
y_{1}(x)=\mathrm{e}^{2(1+i) x}, \quad y_{2}(x)=\mathrm{e}^{2(1-i) x} \tag{22}
\end{equation*}
$$

(c) $y^{\prime \prime}-4 y^{\prime}+4 y=0$. Comparing with the standard form (8.22) we identify

$$
\begin{equation*}
a=1, \quad b=-4, \quad c=4 \tag{23}
\end{equation*}
$$

The roots of the characteristic equation are then given by

$$
\begin{equation*}
m=\frac{1}{2}(4 \pm \sqrt{16-16})=2 \tag{24}
\end{equation*}
$$

This equation is of the type in Case II, so the two solutions are obtained as

$$
\begin{equation*}
y_{1}(x)=\mathrm{e}^{2 x}, \quad y_{2}(x)=x \mathrm{e}^{2 x} \tag{25}
\end{equation*}
$$

4. Having the determined two solutions for each of the equations in Problem 1, we now form the general solution to fit to the initial conditions $y(0)=1, y^{\prime}(0)=-1$.
(a) $y^{\prime \prime}+3 y^{\prime}+2 y=0$. The general solution is

$$
\begin{equation*}
y(x)=A \mathrm{e}^{-x}+B \mathrm{e}^{-2 x} \tag{26}
\end{equation*}
$$

At $x=0$, we have

$$
\begin{align*}
y(0) & =A+B=1 \tag{27}\\
y^{\prime}(0) & =-A-2 B=-1 \tag{28}
\end{align*}
$$

which has the solution

$$
\begin{equation*}
A=1, \quad B=0 \tag{29}
\end{equation*}
$$

so the solution to the initial-value problem is

$$
\begin{equation*}
y(x)=\mathrm{e}^{-x} . \tag{30}
\end{equation*}
$$

(b) $y^{\prime \prime}-4 y^{\prime}+5 y=0$. The general solution is

$$
\begin{equation*}
y(x)=A \mathrm{e}^{2(1+i) x}+B \mathrm{e}^{2(1-i) x} . \tag{31}
\end{equation*}
$$

At $x=0$, we have

$$
\begin{align*}
y(0) & =A+B=1 \tag{32}\\
y^{\prime}(0) & =2(1+i) A+2(1-i) B=-1 \tag{33}
\end{align*}
$$

which has the solution

$$
\begin{equation*}
A=\frac{1}{2}+\frac{3}{4} i, \quad B=\frac{1}{2}-\frac{3}{4} i \tag{34}
\end{equation*}
$$

so the solution to the initial-value problem is

$$
\begin{align*}
y(x) & =\left(\frac{1}{2}+\frac{3}{4} i\right) \mathrm{e}^{2(1+i) x}+\left(\frac{1}{2}-\frac{3}{4} i\right) \mathrm{e}^{2(1-i) x} \\
& =\mathrm{e}^{2 x}\left[\cos (2 x)-\frac{3}{2} \sin (2 x)\right] \tag{35}
\end{align*}
$$

(c) $y^{\prime \prime}-4 y^{\prime}+4 y=0$. The general solution is

$$
\begin{equation*}
y(x)=A \mathrm{e}^{2 x}+B x \mathrm{e}^{2 x} . \tag{36}
\end{equation*}
$$

At $x=0$, we have

$$
\begin{align*}
y(0) & =A=1 \tag{37}\\
y^{\prime}(0) & =2 A+B=-1 \tag{38}
\end{align*}
$$

which has the solution

$$
\begin{equation*}
A=1, \quad B=-3 \tag{39}
\end{equation*}
$$

so the solution to the initial-value problem is

$$
\begin{equation*}
y(x)=\mathrm{e}^{2 x}-3 x \mathrm{e}^{2 x}=(1-3 x) \mathrm{e}^{2 x} . \tag{40}
\end{equation*}
$$

5. Since this is a differential equation with constant coefficients, we attempt to solve this equation with a trial solution of the form $y(x)=e^{m x}$. Substituting this expression into the differential equation yields

$$
\begin{equation*}
m^{4} e^{m x}-e^{m x}=\left(m^{4}-1\right) e^{m x}=0 \tag{41}
\end{equation*}
$$

The characteristic equation is identified as

$$
\begin{equation*}
m^{4}-1=0 \tag{42}
\end{equation*}
$$

which can be factored as

$$
\begin{equation*}
m^{4}-1=\left(m^{2}-1\right)\left(m^{2}+1\right)=(m-1)(m+1)(m-i)(m+i)=0 \tag{43}
\end{equation*}
$$

so we obtain four distinct roots: $m=-1,1,-i, i$. Accordingly, there are four solutions of the differential equation:

$$
\begin{equation*}
y_{1}(x)=e^{-x}, \quad y_{2}(x)=e^{x}, \quad y_{3}(x)=e^{-i x}, \quad y_{4}(x)=e^{i x} . \tag{44}
\end{equation*}
$$

The general solution is a linear combination of these solutions:

$$
\begin{equation*}
y(x)=A e^{-x}+B e^{x}+C e^{-i x}+D e^{i x} \tag{45}
\end{equation*}
$$

where four initial conditions are required to determine the four constants A, B, C, and D.
6. To determine how the Euler equation behaves under the change of variable $x=e^{t}$ (or $t=\ln x$), we first need to determine how the derivatives are transformed. This is done by applying the chain rule:

$$
\begin{align*}
\frac{d}{d x} & =\frac{d t}{d x} \frac{d}{d t} \tag{46}\\
& =\frac{1}{x} \frac{d}{d t}=\mathrm{e}^{-t} \frac{d}{d t} \tag{47}\\
\frac{d^{2}}{d x^{2}} & =\frac{d^{2} t}{d x^{2}} \frac{d}{d t}+\left(\frac{d t}{d x}\right)^{2} \frac{d^{2}}{d t^{2}} \\
& =-\frac{1}{x^{2}} \frac{d}{d t}+\frac{1}{x^{2}} \frac{d^{2}}{d t^{2}}=-\mathrm{e}^{-2 t} \frac{d}{d t}+\mathrm{e}^{-2 t} \frac{d^{2}}{d t^{2}} \tag{48}
\end{align*}
$$

Substituting these expressions into Euler's equation, yields

$$
\begin{align*}
a \mathrm{e}^{2 t}\left(-\mathrm{e}^{-2 t} \frac{d y}{d t}\right. & \left.+\mathrm{e}^{-2 t} \frac{d^{2} y}{d t^{2}}\right)+b \mathrm{e}^{t}\left(\mathrm{e}^{-t} \frac{d y}{d t}\right)+c y \\
& =a \frac{d^{2} y}{d t^{2}}+(b-a) \frac{d y}{d t}+c y=0 \tag{49}
\end{align*}
$$

which is a second-order equation with constant coefficients. We consider the three cases discussed in Section 8.3.

Case I. There are two real roots m_{1} and m_{2} of the characteristic equation, which yield the two solutions

$$
\begin{equation*}
y_{1}(t)=\mathrm{e}^{m_{1} t}, \quad y_{2}(t)=\mathrm{e}^{m_{2} t} . \tag{50}
\end{equation*}
$$

Case II. There is one real root, m_{1}, from which we obtain the two solutions

$$
\begin{equation*}
y_{1}(t)=\mathrm{e}^{m_{1} t}, \quad y_{2}(t)=t \mathrm{e}^{m_{1} t} \tag{51}
\end{equation*}
$$

Case III. There are two roots, m_{1} and m_{1}^{*}, which are complex conjugates, and we obtain the two solutions

$$
\begin{equation*}
y_{1}(t)=\mathrm{e}^{m_{1} t}, \quad y_{2}(t)=\mathrm{e}^{m_{1}^{*} t} \tag{52}
\end{equation*}
$$

To express these solutions in terms of the original variables, we substitute the relation $t=\ln x$ into each of the solutions in Eqs. (50), (51), and (52):

$$
\begin{array}{lll}
y_{1}(x)=x^{m_{1}}, & y_{2}(x)=x^{m_{2}}, & (\text { Case I) } \\
y_{1}(x)=x^{m_{2}}, & y_{2}(x)=x^{m_{1}} \ln x, & (\text { Case II }) \\
y_{1}(x)=x^{m_{1}}, & y_{2}(x)=x^{m_{1}^{*}}, & (\text { Case III }) \tag{55}
\end{array}
$$

