
First-Year Mathematics

Solutions to Problem Set 11 March 17, 2005

1. We solve the equation of motion of a classical undamped harmonic oscillator with
natural frequency ω0,

d2x

dt2
+ ω2

0x = 0 , (1)

with a trial solution x(t) = emt. Substituting this expression into the equation yields

m2 emt + ω2
0 emt = (m2 + ω2

0) emt = 0 . (2)

The characteristic equation is

m2 + ω2
0 = (m − iω0)(m + iω0) = 0 , (3)

which has roots m1 = −iω0 and m2 = iω0. The general solution to the Eq. (1) is

x(t) = A e−iω0t + B eiω0t , (4)

where A and B are determined by the initial conditions,

x(0) = x0 ,
dx

dt

∣∣∣∣
t=0

= x′
0 . (5)

Substitution of Eq. (4) into the initial conditions produces

x(0) = A + B = x0 , (6)

dx

dt

∣∣∣∣
t=0

= −iω0A + iω0B = x′
0 . (7)

After dividing both sides of Eq. (7) by ω0 and multiplying both sides by i, we obtain
the two simultaneous equations for A and B in the form:

A + B = x0 , (8)

A − B =
ix′

0

ω0

. (9)

These equations are easily solved and we obtain

A =
1

2

(
x0 +

ix′
0

ω0

)
, (10)

B =
1

2

(
x0 −

ix′
0

ω0

)
. (11)
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Thus, the solution to the initial-value problem is

x(t) =
1

2

(
x0 +

ix′
0

ω0

)
e−iω0t +

1

2

(
x0 −

ix′
0

ω0

)
eiω0t

= x0

(
eiω0t + e−iω0t

2

)
− ix′

0

ω0

(
eiω0t − e−iω0t

2

)

= x0

(
eiω0t + e−iω0t

2

)
+

x′
0

ω0

(
eiω0t − e−iω0t

2i

)

= x0 cos ω0t +
x′

0

ω0

sin ω0t . (12)

2. To obtain the general solution of

d2y

dx2
+ (E − V ) y = 0 , (13)

we attempt a solution of the form y(x) = emx and choose m by the requirement that
this expression is a solution. Substituting into Eq. (13) yields

(m2 + E − V ) emx = 0 . (14)

The values of m are thus given by

m1 =
√

V − E, m2 = −
√

V − E . (15)

Notice that if V > E, then m1 and m2 are real, which if V < E, the m1 and m2

are imaginary (and complex conjugates of one another). In either case, the general
solution to Eq. (13) is

ψ(x) = A em1x + B em2x , (16)

where A and B are constants to be determined by auxiliary conditions, of which there
must be two. If m1 and m2 are real, then the general solution is combination of
exponentially growing and decaying solutions, while if m1 and m2 are imaginary, the
general solution is a combination of oscillating solutions.

3. For each of the differential equations given, two solutions may be found by first de-
termining the roots of the characteristic equation and then following the procedure
outlined in Section 8.3.

(a) y′′ + 3y′ + 2y = 0. Comparing with the standard form (8.22) we identify

a = 1, b = 3, c = 2 . (17)
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The roots of the characteristic equation are then given by

m = 1
2

(
−3 ±

√
9 − 8

)
= 1

2
(−3 ± 1) = −1,−2 . (18)

This equation is of the type in Case I, so the two solutions are obtained as

y1(x) = e−x, y2(x) = e−2x . (19)

(b) y′′ − 4y′ + 5y = 0. Comparing with the standard form (8.22) we identify

a = 1, b = −4, c = 5 . (20)

The roots of the characteristic equation are then given by

m = 1
2

(
4 ±

√
16 − 20

)
= 1

2
(4 ± 4i) = 2 ± 2i . (21)

This equation is of the type in Case III, so the two solutions are obtained as

y1(x) = e2(1+i)x, y2(x) = e2(1−i)x . (22)

(c) y′′ − 4y′ + 4y = 0. Comparing with the standard form (8.22) we identify

a = 1, b = −4, c = 4 . (23)

The roots of the characteristic equation are then given by

m = 1
2

(
4 ±

√
16 − 16

)
= 2 . (24)

This equation is of the type in Case II, so the two solutions are obtained as

y1(x) = e2x, y2(x) = x e2x . (25)

4. Having the determined two solutions for each of the equations in Problem 1, we now
form the general solution to fit to the initial conditions y(0) = 1, y′(0) = −1.

(a) y′′ + 3y′ + 2y = 0. The general solution is

y(x) = A e−x + B e−2x . (26)

At x = 0, we have

y(0) = A + B = 1 , (27)

y′(0) = −A − 2B = −1 , (28)
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which has the solution

A = 1, B = 0 , (29)

so the solution to the initial-value problem is

y(x) = e−x . (30)

(b) y′′ − 4y′ + 5y = 0. The general solution is

y(x) = A e2(1+i)x + B e2(1−i)x . (31)

At x = 0, we have

y(0) = A + B = 1 , (32)

y′(0) = 2(1 + i)A + 2(1 − i)B = −1 , (33)

which has the solution

A = 1
2

+ 3
4
i, B = 1

2
− 3

4
i , (34)

so the solution to the initial-value problem is

y(x) =
(

1
2

+ 3
4
i
)
e2(1+i)x +

(
1
2
− 3

4
i
)
e2(1−i)x

= e2x
[
cos(2x) − 3

2
sin(2x)

]
. (35)

(c) y′′ − 4y′ + 4y = 0. The general solution is

y(x) = A e2x + Bx e2x . (36)

At x = 0, we have

y(0) = A = 1 , (37)

y′(0) = 2A + B = −1 , (38)

which has the solution

A = 1, B = −3 , (39)

so the solution to the initial-value problem is

y(x) = e2x − 3x e2x = (1 − 3x) e2x . (40)
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5. Since this is a differential equation with constant coefficients, we attempt to solve this
equation with a trial solution of the form y(x) = emx. Substituting this expression into
the differential equation yields

m4 emx − emx = (m4 − 1) emx = 0 . (41)

The characteristic equation is identified as

m4 − 1 = 0 , (42)

which can be factored as

m4 − 1 = (m2 − 1)(m2 + 1) = (m − 1)(m + 1)(m − i)(m + i) = 0 , (43)

so we obtain four distinct roots: m = −1, 1,−i, i. Accordingly, there are four solutions
of the differential equation:

y1(x) = e−x , y2(x) = ex , y3(x) = e−ix , y4(x) = eix . (44)

The general solution is a linear combination of these solutions:

y(x) = A e−x + B ex + C e−ix + D eix , (45)

where four initial conditions are required to determine the four constants A, B, C, and
D.

6. To determine how the Euler equation behaves under the change of variable x = et (or
t = ln x), we first need to determine how the derivatives are transformed. This is done
by applying the chain rule:

d

dx
=

dt

dx

d

dt
(46)

=
1

x

d

dt
= e−t d

dt
, (47)

d2

dx2
=

d2t

dx2

d

dt
+

(
dt

dx

)2
d2

dt2

= − 1

x2

d

dt
+

1

x2

d2

dt2
= −e−2t d

dt
+ e−2t d2

dt2
(48)

Substituting these expressions into Euler’s equation, yields

a e2t

(
−e−2t dy

dt
+ e−2t d

2y

dt2

)
+ b et

(
e−t dy

dt

)
+ cy

= a
d2y

dt2
+ (b − a)

dy

dt
+ cy = 0 , (49)
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which is a second-order equation with constant coefficients. We consider the three
cases discussed in Section 8.3.

Case I. There are two real roots m1 and m2 of the characteristic equation, which yield
the two solutions

y1(t) = em1t, y2(t) = em2t . (50)

Case II. There is one real root, m1, from which we obtain the two solutions

y1(t) = em1t, y2(t) = t em1t . (51)

Case III. There are two roots, m1 and m∗
1, which are complex conjugates, and we

obtain the two solutions

y1(t) = em1t, y2(t) = em∗
1t . (52)

To express these solutions in terms of the original variables, we substitute the relation
t = ln x into each of the solutions in Eqs. (50), (51), and (52):

y1(x) = xm1 , y2(x) = xm2 , (Case I) (53)

y1(x) = xm2 , y2(x) = xm1 ln x , (Case II) (54)

y1(x) = xm1 , y2(x) = xm∗
1 . (Case III) (55)
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