First-Year Mathematics

Solutions to Problem Set 10

1. (a) The bounding curve for the paraboloid is the circle $x^{2}+y^{2}=R^{2}$ in the $x-y$ plane. This curve and the stated vector field are the same as those discussed in lectures (for the upper half-sphere), where it was found that

$$
\begin{equation*}
\oint_{\partial \sigma} \boldsymbol{V} \cdot d \boldsymbol{r}=2 \pi R^{2} . \tag{1}
\end{equation*}
$$

Thus, according to Stokes' theorem, the integral

$$
\begin{equation*}
\iint_{\sigma}(\boldsymbol{\nabla} \times \boldsymbol{V}) \cdot \boldsymbol{n} d \sigma \tag{2}
\end{equation*}
$$

where σ is the paraboloid for $z \geq 0$, also has this value because the two surfaces have the same bounding curve.
(b) We have that $\boldsymbol{V} \cdot d \boldsymbol{r}=-y d x+x d y$ for any path in $x-y$ plane. The integral over a closed curve in the $x-y$ plane is therefore

$$
\begin{equation*}
\oint_{\partial \sigma}(x d y-y d x) \tag{3}
\end{equation*}
$$

In circular polar coordinates,

$$
\begin{equation*}
x=R \cos \phi, \quad y=R \sin \phi, \tag{4}
\end{equation*}
$$

with $0 \leq \phi \leq 2 \pi$, we have

$$
\begin{equation*}
d x=-R \sin \phi d \phi, \quad d y=R \cos \phi d \phi \tag{5}
\end{equation*}
$$

The loop integral is therefore given by

$$
\begin{equation*}
\oint_{\partial \sigma}(x d y-y d x)=R^{2} \int_{0}^{2 \pi} d \phi=2 \pi R^{2} . \tag{6}
\end{equation*}
$$

(c) The curl of \boldsymbol{V} is $\boldsymbol{\nabla} \times \boldsymbol{V}=2 \boldsymbol{k}$. The surface unit normal was found in lectures to be

$$
\begin{equation*}
\boldsymbol{n}=\frac{x}{R} \boldsymbol{i}+\frac{y}{R} \boldsymbol{j}+\frac{z}{R} \boldsymbol{k}, \tag{7}
\end{equation*}
$$

so $(\boldsymbol{\nabla} \times \boldsymbol{V}) \cdot \boldsymbol{n}=2 z / R$. As in the lectures, the surface integral is calculated in spherical polar coordinates:

$$
\begin{equation*}
d \sigma=R^{2} \sin \theta d \theta d \phi, \quad z=R \cos \theta \tag{8}
\end{equation*}
$$

where $0 \leq \phi \leq 2 \pi$ and $0 \leq \theta \leq \frac{1}{2} \pi$. The integral is

$$
\begin{equation*}
\iint_{\sigma}(\boldsymbol{\nabla} \times \boldsymbol{V}) \cdot \boldsymbol{n} d \sigma=2 R^{2} \int_{0}^{2 \pi} d \phi \int_{0}^{\pi / 2} d \theta \sin \theta \cos \theta=\left.2 \pi R^{2} \sin ^{2} \theta\right|_{0} ^{\pi / 2}=2 \pi R^{2} \tag{9}
\end{equation*}
$$

which agrees with the result of Part (b).
(d) The corresponding calculation for the lower half-sphere is carried out by observing that the limits on the θ-integration are now given by $\frac{1}{2} \pi \leq \theta \leq \pi$, so the surface integral is

$$
\begin{equation*}
\iint_{\sigma}(\boldsymbol{\nabla} \times \boldsymbol{V}) \cdot \boldsymbol{n} d \sigma=2 R^{2} \int_{0}^{2 \pi} d \phi \int_{\pi / 2}^{\pi} d \theta \sin \theta \cos \theta=\left.2 \pi R^{2} \sin ^{2} \theta\right|_{\pi / 2} ^{\pi}=-2 \pi R^{2} \tag{10}
\end{equation*}
$$

which is the negative of the result obtained for the upper half-sphere. This is due ultimately to the "right-hand rule" for the orientation between the curl and the unit normal.
(e) From the results in Parts (c) and (d) for the upper and lower half-spheres, we deduce that

$$
\begin{equation*}
\iint_{\sigma}(\boldsymbol{\nabla} \times \boldsymbol{V}) \cdot \boldsymbol{n} d \sigma=0 \tag{11}
\end{equation*}
$$

where σ is the entire surface of the sphere of radius R. Indeed, this result can be generalized to any closed surface. Consider a cut through a plane parallel to the $x-y$ plane which divides the surface into upper and lower parts. According to Stokes' theorem and the results of Parts (c) and (d) the value of

$$
\begin{equation*}
\iint_{\sigma}(\boldsymbol{\nabla} \times \boldsymbol{V}) \cdot \boldsymbol{n} d \sigma \tag{12}
\end{equation*}
$$

for the upper and lower parts of the surface have the same absolute value, but opposite signs. Thus, the integral over the entire surface vanishes.
2. (a) The stationary solutions of the logistic equation are determined by solving $d N / d t=$ 0 :

$$
\begin{equation*}
\left(1-\frac{N}{\beta}\right) N=0 \tag{13}
\end{equation*}
$$

which yields the two solutions

$$
\begin{equation*}
N=0 \quad \text { and } \quad N=\beta \tag{14}
\end{equation*}
$$

(b) The solution of the logistic equation proceeds by observing that it is a separable equation, so we first write:

$$
\begin{equation*}
\frac{d N}{\alpha\left(1-\frac{N}{\beta}\right) N}=\alpha d t \tag{15}
\end{equation*}
$$

Integration of the left-hand side requires partial fractions:

$$
\begin{equation*}
\frac{1}{\left(1-\frac{N}{\beta}\right) N}=\frac{A}{N}+\frac{B}{1-\frac{N}{\beta}}, \tag{16}
\end{equation*}
$$

or

$$
\begin{equation*}
A\left(1-\frac{N}{\beta}\right)+B N=1 \tag{17}
\end{equation*}
$$

Choosing in turn $N=0$ and $N=\beta$, yields $A=1$ and $B=1 / \beta$. Thus,

$$
\begin{equation*}
\frac{d N}{N}+\frac{d N}{\beta-N}=\alpha d t \tag{18}
\end{equation*}
$$

By integrating from $N=N_{0}$ at $t=0$ to $N=N(t)$ at t, we obtain

$$
\begin{equation*}
\ln \left[\frac{N(t)}{N_{0}}\right]-\ln \left[\frac{\beta-N(t)}{\beta-N_{0}}\right]=\alpha t \tag{19}
\end{equation*}
$$

Solving for $N(t)$ yields

$$
\begin{equation*}
N(t)=\frac{N_{0} \beta}{N_{0}+\left(\beta-N_{0}\right) \mathrm{e}^{-\alpha t}} . \tag{20}
\end{equation*}
$$

(c) For $0<N_{0}<\beta$,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} N(t)=\beta \tag{21}
\end{equation*}
$$

(d) The asymptotic solution $N=0$ is obtained only if $N_{0}=0$. In particular if a solution starts near zero, it eventually reaches the solution $N=\beta$.
3. (a) The daily rate of change of the population P is given by

$$
\begin{equation*}
\frac{d P}{d t}=r P+15-16-7=r P-8 \tag{22}
\end{equation*}
$$

Initially, there are 100 insects, so

$$
\begin{equation*}
P(0)=100 \tag{23}
\end{equation*}
$$

(b) By introducing the quantity Q, defined in terms of P by

$$
\begin{equation*}
P=Q+\frac{8}{r} \tag{24}
\end{equation*}
$$

the differential equation for Q is

$$
\begin{equation*}
\frac{d P}{d t}=\frac{d Q}{d t}=r\left(Q+\frac{8}{r}\right)-8=r Q \tag{25}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\frac{d Q}{d t}=r Q \tag{26}
\end{equation*}
$$

The initial condition for Q is determined from

$$
\begin{equation*}
P(0)=Q(0)+\frac{8}{r}=100 \tag{27}
\end{equation*}
$$

which yields

$$
\begin{equation*}
Q(0)=100-\frac{8}{r} \tag{28}
\end{equation*}
$$

This equation has the same form as that solved in lectures. The solution is given by

$$
\begin{equation*}
Q(t)=Q(0) e^{r t}=\left(100-\frac{8}{r}\right) e^{r t} \tag{29}
\end{equation*}
$$

The solution P of the original equation is therefore given by

$$
\begin{align*}
P(t) & =Q(t)+\frac{8}{r}=\left(100-\frac{8}{r}\right) e^{r t}+\frac{8}{r} \\
& =100 e^{r t}+\frac{8}{r}\left(1-e^{r t}\right) \tag{30}
\end{align*}
$$

(c) The observation that, in the absence of outside factors, the population triples in two weeks can be used to determine r. With no outside factors, the differential equation for P is

$$
\begin{equation*}
\frac{d P}{d t}=r P \tag{31}
\end{equation*}
$$

with $\mathrm{P}(0)=100$. The solution is, in this case, given by

$$
\begin{equation*}
P(t)=100 e^{r t} \tag{32}
\end{equation*}
$$

Thus, the condition for r is

$$
\begin{equation*}
P(14)=100 e^{14 r}=300, \tag{33}
\end{equation*}
$$

which yields

$$
\begin{equation*}
r=\frac{1}{14} \ln 3 \tag{34}
\end{equation*}
$$

(d) The complete solution $P(t)$ is given by

$$
\begin{equation*}
P(t)=100 \exp \left(\frac{\ln 3}{14} t\right)+\frac{112}{\ln 3}\left[1-\exp \left(\frac{\ln 3}{14} t\right)\right] . \tag{35}
\end{equation*}
$$

Setting $P=0$, yields

$$
\begin{equation*}
\frac{112}{\ln 3}=\left(\frac{112}{\ln 3}-100\right) \exp \left(\frac{\ln 3}{14} t\right) . \tag{36}
\end{equation*}
$$

or,

$$
\begin{equation*}
\exp \left(\frac{\ln 3}{14} t\right)=\frac{112}{112-100 \ln 3} \tag{37}
\end{equation*}
$$

Thus, the time t^{*} at which the population vanishes is

$$
\begin{equation*}
t^{*}=\frac{14}{\ln 3} \ln \left(\frac{112}{112-100 \ln 3}\right)=50.44 \text { days } \tag{38}
\end{equation*}
$$

Thus, the population of insects ceases to exist after this time. The solution is plotted below:

