
First-Year Mathematics

Solutions to Problem Set 10 March 11, 2005

1. (a) The bounding curve for the paraboloid is the circle x2 +y2 = R2 in the x–y plane.
This curve and the stated vector field are the same as those discussed in lectures
(for the upper half-sphere), where it was found that∮

∂σ

V · dr = 2πR2 . (1)

Thus, according to Stokes’ theorem, the integral∫∫
σ

(∇ × V ) · n dσ , (2)

where σ is the paraboloid for z ≥ 0, also has this value because the two surfaces
have the same bounding curve.

(b) We have that V · dr = −y dx + x dy for any path in x–y plane. The integral over
a closed curve in the x–y plane is therefore∮

∂σ

(x dy − y dx) (3)

In circular polar coordinates,

x = R cos φ , y = R sin φ , (4)

with 0 ≤ φ ≤ 2π, we have

dx = −R sin φ dφ , dy = R cos φ dφ . (5)

The loop integral is therefore given by∮
∂σ

(x dy − y dx) = R2

∫ 2π

0

dφ = 2πR2 . (6)

(c) The curl of V is ∇× V = 2 k. The surface unit normal was found in lectures to
be

n =
x

R
i +

y

R
j +

z

R
k , (7)

so (∇ × V ) · n = 2z/R. As in the lectures, the surface integral is calculated in
spherical polar coordinates:

dσ = R2 sin θ dθ dφ, z = R cos θ , (8)
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where 0 ≤ φ ≤ 2π and 0 ≤ θ ≤ 1
2
π. The integral is∫∫

σ

(∇ × V ) · n dσ = 2R2

∫ 2π

0

dφ

∫ π/2

0

dθ sin θ cos θ = 2πR2 sin2 θ

∣∣∣∣π/2

0

= 2πR2 ,

(9)

which agrees with the result of Part (b).

(d) The corresponding calculation for the lower half-sphere is carried out by observing
that the limits on the θ-integration are now given by 1

2
π ≤ θ ≤ π, so the surface

integral is∫∫
σ

(∇ × V ) · n dσ = 2R2

∫ 2π

0

dφ

∫ π

π/2

dθ sin θ cos θ = 2πR2 sin2 θ

∣∣∣∣π
π/2

= −2πR2 ,

(10)

which is the negative of the result obtained for the upper half-sphere. This is due
ultimately to the “right-hand rule” for the orientation between the curl and the
unit normal.

(e) From the results in Parts (c) and (d) for the upper and lower half-spheres, we
deduce that ∫∫

σ

(∇ × V ) · n dσ = 0 , (11)

where σ is the entire surface of the sphere of radius R. Indeed, this result can
be generalized to any closed surface. Consider a cut through a plane parallel to
the x–y plane which divides the surface into upper and lower parts. According to
Stokes’ theorem and the results of Parts (c) and (d) the value of∫∫

σ

(∇ × V ) · n dσ (12)

for the upper and lower parts of the surface have the same absolute value, but
opposite signs. Thus, the integral over the entire surface vanishes.

2. (a) The stationary solutions of the logistic equation are determined by solving dN/dt =
0: (

1 − N

β

)
N = 0 , (13)

which yields the two solutions

N = 0 and N = β . (14)
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(b) The solution of the logistic equation proceeds by observing that it is a separable
equation, so we first write:

dN

α

(
1 − N

β

)
N

= αdt . (15)

Integration of the left-hand side requires partial fractions:

1(
1 − N

β

)
N

=
A

N
+

B

1 − N

β

, (16)

or

A

(
1 − N

β

)
+ BN = 1 . (17)

Choosing in turn N = 0 and N = β, yields A = 1 and B = 1/β. Thus,

dN

N
+

dN

β − N
= αdt . (18)

By integrating from N = N0 at t = 0 to N = N(t) at t, we obtain

ln

[
N(t)

N0

]
− ln

[
β − N(t)

β − N0

]
= αt . (19)

Solving for N(t) yields

N(t) =
N0β

N0 + (β − N0) e−αt
. (20)

(c) For 0 < N0 < β,

lim
t→∞

N(t) = β (21)

(d) The asymptotic solution N = 0 is obtained only if N0 = 0. In particular if a
solution starts near zero, it eventually reaches the solution N = β.

3. (a) The daily rate of change of the population P is given by

dP

dt
= rP + 15 − 16 − 7 = rP − 8 . (22)

Initially, there are 100 insects, so

P (0) = 100 . (23)
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(b) By introducing the quantity Q, defined in terms of P by

P = Q +
8

r
, (24)

the differential equation for Q is

dP

dt
=

dQ

dt
= r

(
Q +

8

r

)
− 8 = rQ , (25)

i.e.

dQ

dt
= rQ . (26)

The initial condition for Q is determined from

P (0) = Q(0) +
8

r
= 100 , (27)

which yields

Q(0) = 100 − 8

r
. (28)

This equation has the same form as that solved in lectures. The solution is given
by

Q(t) = Q(0) ert =

(
100 − 8

r

)
ert . (29)

The solution P of the original equation is therefore given by

P (t) = Q(t) +
8

r
=

(
100 − 8

r

)
ert +

8

r

= 100 ert +
8

r

(
1 − ert

)
. (30)

(c) The observation that, in the absence of outside factors, the population triples in
two weeks can be used to determine r. With no outside factors, the differential
equation for P is

dP

dt
= rP . (31)

with P(0)=100 . The solution is, in this case, given by

P (t) = 100 ert . (32)

Thus, the condition for r is

P (14) = 100 e14r = 300 , (33)

which yields

r =
1

14
ln 3 . (34)
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(d) The complete solution P (t) is given by

P (t) = 100 exp

(
ln 3

14
t

)
+

112

ln 3

[
1 − exp

(
ln 3

14
t

)]
. (35)

Setting P = 0, yields

112

ln 3
=

(
112

ln 3
− 100

)
exp

(
ln 3

14
t

)
. (36)

or,

exp

(
ln 3

14
t

)
=

112

112 − 100 ln 3
. (37)

Thus, the time t∗ at which the population vanishes is

t∗ =
14

ln 3
ln

(
112

112 − 100 ln 3

)
= 50.44 days . (38)

Thus, the population of insects ceases to exist after this time. The solution is
plotted below:
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