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1. (a) The outward normal to a sphere of radius R is calculated by taking the gradient

of the equation 2% + 3? + 22 = R%:
V(2492 +2°) =22i+2yj+22k.
The magnitude of this vector on the sphere of radius unity is obtained from
[V(2® + 3+ 2°) - V(2® + y* + 2°)] = 42 + 4y° + 42° =4.
R=1 R=1

Thus,

V@ +yr ) X
n7|V(:c2+y2—|—22)|—xz+yJ+Z .

The “dot” product V' - n is
(xi+yj+ayzk) (vit+yj+zk)=a"+y° +ayz>.
In spherical polar coordinates on the surface of the unit sphere, we have
x =sinfcos ¢, y =sinfsing, 2z =cosf, do =sinfdbde.
Thus,
2, .2 2 (e 2 . C N2, 2 2 .
¥+ y° + xyz® = (sinfcos ) + (sin fsin ¢)° + sin” 0 cos” 0 cos ¢ sin ¢
= sin? f + sin? 0 cos? 6 cos ¢ sin ¢,

so the surface integral becomes

27 ™
//V-nda :/ d¢/ sin @ df(sin® § + cos ¢ sin ¢ sin® 0 cos® 0)
0 0

2w ™ 2 s
:/ dgb/ sin30d9+/ cosgzﬁsingbdgzﬁ/ sin” 0 cos? 6 df
0 0 0 0

27 6

= 27?/ sin®60de .
0
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This integral is straightforward to carry out:

/ sin38d9:/ sin (1 — cos®6) df
0 0

:/ sin9d9—/ sin 6 cos? 6 df
0 0

= —cosf —I—%cosgﬁ
0 0
2
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The surface integral therefore evaluates to
/ V -ndo = §7r
3

(c) The divergence of V' is
V- V=14+142y=2+uy.

In spherical polar coordinates, we have

xr=rsinfcoso, y=rsinfsing, dr =r’sin@drdf de.

Thus,

/ V. nda—/ dgf)/ sin 6 df(2 + cos ¢ sin ¢ sin” 6)

= /7’ dr/ qu/ sin 6 df
1 2 ™
+/ r4dr/ cosgzﬁsin(bdgb/ sin® @ df
0 Jo 0
0
1 2w T
:2/ r2dr/ dqb/ sin 6 df
N
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which agrees with Eq. (9).

(10)

(11)

(12)



2.

(a) The “dot” product V - n is

R
V.n:<“+y3+z >.(a:i—|—yj—|—zk:)

Va2 4 y? + 22

x2+y2+22

ar?+y?+ 22
_ A (13

Again using spherical coordinates for the surface integral over the unit sphere, we
have that 22 + y* + 22 = 1, so that

/ V. nda—/ dgb/ sinfdf = 4, (14)
H—’
2m 2

which is the surface area of the sphere.

(b) The divergence of V' is
V.V

0 x 0 Y 0 z
dr \ /a2 +y2+22) Oy \a+y?+22) 0z \ /22 +y>+ 22

The partial derivatives are evaluated as:

0 x B
Oz \ \/22 +y2 + 22 _x2+y + 22

N - ) (16)

o 2
2 Y = Va2 422 — J
Oy \ /o2 +y2 + 22 a:2+y + 22 22 + 2 + 22

0 z B
0z \ /22 + 12 + 22 _$2+y+2

Adding these terms together yields

1 2 2 2
V-V:—<3 22+ y2 4 22 — Tty +z )

2%+ y? + 22 Va2 +y? + 22
1

=P (3\/x2+y2+z2—\/x2+y2+z2>

_ 2 | (19)

V2 4 y? + 22
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In spherical polar coordinates, this reduces to

V-V—%, (20)

and the volume integral of this divergence is
1 2 ™
// V-VdeQ/ rdr/ dgb/ sinf df = 4, (21)
N
1 27 2

in agreement with Eq. (14).

3. The gradient of the scalar function ®(r), where r = (2 + y?)'/?, is
0P 0 dPOr . dPOr .

b=+ - = — 7. 22
v 3x+8y dr@xz—i_dray'j (22)
Since
o 1, ., N-1/26. &
or L, 2\—1/2 Y
e R (24)
we have
dd rx . y .

On the perimeter of the circle of radius R centered at the origin, this expression is

B (% i+ %j) . (26)

The outward unit normal along the perimeter of the circle is determined by first taking
the gradient of 22 + 12,

o

) -
V 'r:R dr

V(2> 49 =21+ 2y7, (27)
and normalizing, to obtain
n="i+2j, (28)
r r

which, over the perimeter of the circle is

T
== Z 3. 2
n Rz—l—R (29)



Thus,

2 2
dr r—R R2 dr r=R
SO
2
/VV~nda:/ e quﬁzzﬁ}gd_@
0 dr r=R dr r=R

For the right-hand side to be independent of R, we must have that
o(r)=Alnr,

where A is an constant. In this case, we obtain

/VV-ndU:27TA.

(30)

(33)

The same discussion in the course notes for the three-dimensional case can now be
applied here to obtain Gauss’s law in two dimensions. The main difference is that the

Coulomb potential is replaced by ¢(r) = Alnr.



