First-Year Mathematics

Problem Set 8

The divergence theorem in three dimensions is

$$
\iiint \boldsymbol{\nabla} \cdot \boldsymbol{V} d \tau=\iint \boldsymbol{V} \cdot \boldsymbol{n} d \sigma
$$

for a volume τ bounded by a surface σ.

1. Evaluate both sides of this equation for

$$
\boldsymbol{V}=x \boldsymbol{i}+y \boldsymbol{j}+x y z \boldsymbol{k},
$$

where the volume τ is the region $x^{2}+y^{2}+z^{2} \leq 1$. Proceed by following the steps outlined below.
(a) To evaluate the right-hand side of the divergence theorem, begin by showing that the outward unit normal \boldsymbol{n} to the surface σ surrounding the region τ is

$$
\boldsymbol{n}=x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k} .
$$

(b) Form the "dot" product $\boldsymbol{V} \cdot \boldsymbol{n}$, use spherical polar coordinates to set up the surface integral on the right-hand side as

$$
\iint \boldsymbol{V} \cdot \boldsymbol{n} d \sigma=\int_{0}^{2 \pi} d \phi \int_{0}^{\pi} \sin \theta d \theta\left(\sin ^{2} \theta+\cos \phi \sin \phi \sin ^{2} \theta \cos ^{2} \theta\right)
$$

and show that this integral evaluates to $\frac{8}{3} \pi$.
(c) Calculate divergence of \boldsymbol{V}, set up the volume integral in spherical polar coordinates,

$$
\iiint \boldsymbol{\nabla} \cdot \boldsymbol{V} d \tau=\int_{0}^{1} r^{2} d r \int_{0}^{2 \pi} d \phi \int_{0}^{\pi} \sin \theta d \theta\left(2+r^{2} \cos \phi \sin \phi \sin ^{2} \theta\right)
$$

evaluate this integral, and thereby verify the divergence theorem.
2. Verify the divergence theorem for

$$
\boldsymbol{V}=\frac{x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}}{\sqrt{x^{2}+y^{2}+z^{2}}}
$$

where τ again is the region $x^{2}+y^{2}+z^{2} \leq 1$.
(a) To evaluate the right-hand side of the theorem, show that

$$
\boldsymbol{V} \cdot \boldsymbol{n}=\sqrt{x^{2}+y^{2}+z^{2}}
$$

and evaluate the surface integral to obtain

$$
\iint \boldsymbol{V} \cdot \boldsymbol{n} d \sigma=4 \pi
$$

(b) For the right-hand side of the divergence theorem, show that

$$
\boldsymbol{\nabla} \cdot \boldsymbol{V}=\frac{2}{\sqrt{x^{2}+y^{2}+z^{2}}}
$$

and evaluate the integral over τ to obtain the same result as in (a).
3. Consider Gauss' law in two dimensions. Let \boldsymbol{V} be defined by

$$
\boldsymbol{V}=\boldsymbol{\nabla} \Phi(r),
$$

where $r=\left(x^{2}+y^{2}\right)^{1 / 2}$. By following analogous steps to those in Sec. 6.3 of the course notes, show that on the perimeter of a circle of radius R centered at the origin,

$$
\boldsymbol{V} \cdot \boldsymbol{n}=\left.\frac{d \Phi}{d r}\right|_{r=R}
$$

Hence, by integrating the quantity $\boldsymbol{V} \cdot \boldsymbol{n}$ over the perimeter of a circle of radius R, obtain

$$
\iint \boldsymbol{V} \cdot \boldsymbol{n} d \sigma=\left.2 \pi R \frac{d \Phi}{d r}\right|_{r=R}
$$

Determine the function $\Phi(r)$ that ensures that the right-hand side is independent of R. This is the two-dimensional analogue of the Coulomb potential in three dimensions.

