First-Year Mathematics

Solutions to Problem Set 7 February 18, 2005

1. The divergence of a vector field V' = P(z,y,2)t + Q(x,y,2)J + R(z,y, 2) k is
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2. The gradient of a scalar function f(x,y,z) is
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The gradient is a vector field, so we can compute its divergence by applying Eq. (1)
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Alternatively, beginning with the “del” operation
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the “dot” product V - V = V? yields

We thereby obtain
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which agrees with Eq. (7).
To take the Laplacian of
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we calculate the partial derivatives with respect to x, y,, and z by applying the chain
rule:
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Essentially identical calculations yield
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The Laplacian of the function in Eq. (11) is obtained by adding together the derivatives
calculated in Eqs. (12), (13), and (14):
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(a) The divergence of V. =21+ yj is
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The integral of this divergence over the interior of a circle of radius R can be done
by inspection, or by using polar coordinates:
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(b) The equation for the circle is z? + y? = R? The gradient of this expression is
V(x? +9°) =2ri+2yj.

By taking the “dot” product of this vector with itself and using the fact that x
and y lie on a circle of radius R, we obtain
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The outward unit normal n to the circle is therefore given by
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so the integral of this quantity over the circumference of the circle is
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which agrees with the result obtained in Part (a).
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(a) The boundary of the semi-circular region is given by the equation 2 +y? = 1, so

the outward normal is obtained by taking the gradient of this expression:
V(2 + %) = 2wi+ 2y, (16)

The corresponding unit vector is obtained by dividing this vector by its magnitude
on a circle of unit radius,
IV (a* +y°)| =2, (17)
to obtain
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For the straight part of the boundary, the unit normal is see by inspection to be
n = —j. It can also be calculated by taking gradient the equation of this line,
Yy = constant,

=z1+yjg. (18)
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where the minus sign is inserted to make the vector point along the outward
direction of the enclosed surface. The integral of V -m over the boundary is
therefore given by the sum of two integrals: one over the semi-circular segment,
o1 and one over the straight segment, os:
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Using circular polar coordinates for the first integral, with
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and doy = dz for the second integral, we obtain
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(b) The divergence of V' is
V.V =y. (23)
Thus, using polar coordinates,
y=rsing, dr =rdrde, (24)
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we obtain
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which is the same result as in Eq. (22).

5. Upon dividing the interval (a, b) divided into N subintervals of length Axy = (b—a)/N,
we have
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The Fundamental Theorem of Calculus is
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which we can write as b
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By comparing Eqgs. (27) with (29), we conclude that the two are equivalent.

6. The equation of the circle is
(z —x0)” + (y — 90)* = R?, (30)
which can be parametrized in circular polar coordinates as
T =29+ Rcosg, Yy =1+ Rsino, (31)

where 0 < ¢ < 27. To calculate the flux V' - n through the circular boundary, we first
determine the outward normal n at the boundary by using the gradient:

V (2 —a0)* + (y —90)*| = 2(x — o) i +2(y —90) 5 . (32)
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Along the circular boundary, x and y are given by Eq. (31), so this expression reduces
to
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The corresponding unit vector is obtained by dividing this vector by its length, which
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so, on the circle,
V -n = P(xg+ Rcos ¢,y + Rsin¢) cos ¢
+Q(z9+ Rcos ¢, yo + Rsin¢g)sin¢. (36)

The flux of V' through the circular boundary is therefore given by
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We can now expand P and ) in Taylor series about the center of the circle. This is
essentially an expansion in powers of R, so we keep only the first-order term, since the
higher-order terms will vanish in the limit that R — 0. We obtain
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Substitution of these expansions into Eq. (37) yields
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Dividing both sides of this equation by the area A = wR? of the circle and taking the

limit that R — 0 yields
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which is the divergence of V' at (zg, o).

: (41)

Z0,Y0



