
First-Year Mathematics

Solutions to Problem Set 7 February 18, 2005

1. The divergence of a vector field V = P (x, y, z) i + Q(x, y, z) j + R(x, y, z) k is

∇ · V =
∂P

∂x
+

∂Q

∂y
+

∂R

∂z
. (1)

(a) V = y i + z j + x k

∇ · V =
∂(y)

∂x
+

∂(z)

∂y
+

∂(x)

∂z
= 0 + 0 + 0 = 0 . (2)

(b) V = 2 i − j + (y − 4z) k

∇ · V =
∂(2)

∂x
− ∂(1)

∂y
+

∂(y − 4z)

∂z
= 0 + 0 − 4 = −4 . (3)

(c) V = 3x2y i − 2y2x j + xyz k

∇ · V = 3
∂(x2y)

∂x
− 2

∂(y2x)

∂y
+

∂(xyz)

∂z
= 6xy − 4xy + xy = 3xy . (4)

2. The gradient of a scalar function f(x, y, z) is

∇f =
∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k . (5)

The gradient is a vector field, so we can compute its divergence by applying Eq. (1)
with

P =
∂f

∂x
, Q =

∂f

∂y
, R =

∂f

∂z
. (6)

We obtain

∇ · (∇f) =
∂P

∂x
+

∂Q

∂y
+

∂R

∂z

=
∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
. (7)

Alternatively, beginning with the “del” operation

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
, (8)
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the “dot” product ∇ · ∇ = ∇2 yields

∇2 =

(
i

∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)
·
(
i

∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)

=
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (9)

We thereby obtain

∇2f =
∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
, (10)

which agrees with Eq. (7).

To take the Laplacian of

f(x, y, z) =
1√

x2 + y2 + z2
=

1

r
, (11)

we calculate the partial derivatives with respect to x, y,, and z by applying the chain
rule:

∂

∂x

(
1√

x2 + y2 + z2

)
=

∂

∂x

[(
x2 + y2 + z2

)−1/2
]

= −1

2

(
x2 + y2 + z2

)−3/2
2x

= −x
(
x2 + y2 + z2

)−3/2
.

∂2

∂x2

(
1√

x2 + y2 + z2

)
=

∂

∂x

[
−x

(
x2 + y2 + z2

)−3/2
]

= −
(
x2 + y2 + z2

)−3/2
+ x

(
−3

2

) (
x2 + y2 + z2

)−5/2
2x

= −
(
x2 + y2 + z2

)−3/2
+ 3x2

(
x2 + y2 + z2

)−5/2
. (12)

Essentially identical calculations yield

∂2

∂y2

(
1√

x2 + y2 + z2

)
= −

(
x2 + y2 + z2

)−3/2
+ 3y2

(
x2 + y2 + z2

)−5/2
(13)

∂2

∂z2

(
1√

x2 + y2 + z2

)
= −

(
x2 + y2 + z2

)−3/2
+ 3z2

(
x2 + y2 + z2

)−5/2
. (14)
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The Laplacian of the function in Eq. (11) is obtained by adding together the derivatives
calculated in Eqs. (12), (13), and (14):

∇2

(
1√

x2 + y2 + z2

)
= −3

(
x2 + y2 + z2

)−3/2
+ 3(x2 + y2 + z2)

(
x2 + y2 + z2

)−5/2

= −3
(
x2 + y2 + z2

)−3/2
+ 3

(
x2 + y2 + z2

)−3/2

= 0 . (15)

3. (a) The divergence of V = x i + y j is

∇ · V =
∂(x)

∂x
+

∂(y)

∂y
= 1 + 1 = 2 .

The integral of this divergence over the interior of a circle of radius R can be done
by inspection, or by using polar coordinates:

2
∫ R

0
r dr︸ ︷︷ ︸

1
2
R2

∫ 2π

0
dφ︸ ︷︷ ︸

2π

= 2πR2 .

(b) The equation for the circle is x2 + y2 = R2 The gradient of this expression is

∇(x2 + y2) = 2x i + 2y j .

By taking the “dot” product of this vector with itself and using the fact that x
and y lie on a circle of radius R, we obtain

(2x i + 2y j) · (2x i + 2y j) = 4x2 + 4y2 = 4R2 .

The outward unit normal n to the circle is therefore given by

n =
x

R
i +

y

R
j .

Thus,

V · n =
x2

R
+

y2

R
= R ,

so the integral of this quantity over the circumference of the circle is∫
V · n dσ = R × 2πR = 2πR2 ,

which agrees with the result obtained in Part (a).
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4. (a) The boundary of the semi-circular region is given by the equation x2 + y2 = 1, so
the outward normal is obtained by taking the gradient of this expression:

∇(x2 + y2) = 2x i + 2y j , (16)

The corresponding unit vector is obtained by dividing this vector by its magnitude
on a circle of unit radius,

|∇(x2 + y2)| = 2 , (17)

to obtain

n =
∇(x2 + y2)

|∇(x2 + y2)| = x i + y j . (18)

For the straight part of the boundary, the unit normal is see by inspection to be
n = −j. It can also be calculated by taking gradient the equation of this line,
y = constant,

n = −∇x = −j , (19)

where the minus sign is inserted to make the vector point along the outward
direction of the enclosed surface. The integral of V ·n over the boundary is
therefore given by the sum of two integrals: one over the semi-circular segment,
σ1 and one over the straight segment, σ2:∫

V ·n dσ =
∫

(xy i + x2 j)·(x i + y j) dσ1 +
∫

(xy i + x2 j)·(−j) dσ2

= 2
∫

x2y dσ1 −
∫

x2 dσ2 . (20)

Using circular polar coordinates for the first integral, with

x = cos φ , y = sin φ , dσ1 = dφ , (21)

and dσ2 = dx for the second integral, we obtain∫
V ·n dσ = 2

∫ π

0
cos2 φ sin φ dφ −

∫ 1

−1
x2 dx

= −2

3
cos3 φ

∣∣∣∣π
0
− 1

3
x3

∣∣∣∣1
−1

=
4

3
− 2

3
=

2

3
. (22)

(b) The divergence of V is
∇·V = y . (23)

Thus, using polar coordinates,

y = r sin φ , dτ = r dr dφ , (24)
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we obtain ∫∫
∇·V dτ =

∫ 1

0
r dr

∫ π

0
dφ(r sin φ)

=
∫ 1

0
r2 dr︸ ︷︷ ︸
1
3

∫ π

0
sin φ dφ︸ ︷︷ ︸
2

=
2

3
, (25)

which is the same result as in Eq. (22).

5. Upon dividing the interval (a, b) divided into N subintervals of length ∆xN = (b−a)/N ,
we have

N−1∑
n=0

[f(x + ∆x) − f(x)]
∣∣∣∣
x=a+n∆x+N

= [f(a + ∆x) − f(a)]

+ [f(a + 2∆x) − f(x + ∆x)] + · · · +
[
f(x + N∆xN)︸ ︷︷ ︸

f(b)

−f(x + (N − 1)∆xN)
]

= f(b) − f(a) , (26)

because of cancellation on neighboring intervals. Thus,

lim
N→∞

[
N−1∑
n=0

df

dx

∣∣∣∣
x=a+n∆xN

∆xN

]
=

∫ b

a

df

dx
dx = f(b) − f(a) . (27)

The Fundamental Theorem of Calculus is∫ b

a
f(x) dx = F (b) − F (a) ,

dF

dx
= f , (28)

which we can write as ∫ b

a

dF

dx
(x) dx = F (b) − F (a) . (29)

By comparing Eqs. (27) with (29), we conclude that the two are equivalent.

6. The equation of the circle is

(x − x0)
2 + (y − y0)

2 = R2 , (30)

which can be parametrized in circular polar coordinates as

x = x0 + R cos φ , y = y0 + R sin φ , (31)

where 0 ≤ φ < 2π. To calculate the flux V ·n through the circular boundary, we first
determine the outward normal n at the boundary by using the gradient:

∇
[
(x − x0)

2 + (y − y0)
2
]

= 2(x − x0) i + 2(y − y0) j . (32)
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Along the circular boundary, x and y are given by Eq. (31), so this expression reduces
to

∇
[
(x − x0)

2 + (y − y0)
2
]

= 2 cos φ i + 2 sin φ j . (33)

The corresponding unit vector is obtained by dividing this vector by its length, which
is ∣∣∣∇ [

(x − x0)
2 + (y − y0)

2
]∣∣∣ =

(
4 cos2 φ + 4 sin2

)1/2
= 2 . (34)

Thus,
n = cos φ i + sin φ j , (35)

so, on the circle,

V · n = P (x0 + R cos φ, y0 + R sin φ) cos φ

+Q(x0 + R cos φ, y0 + R sin φ) sin φ . (36)

The flux of V through the circular boundary is therefore given by

F =
∫ 2π

0

[
P (x0 + R cos φ, y0 + R sin φ) cos φ

+Q(x0 + R cos φ, y0 + R sin φ) sin φ
]
R dφ . (37)

We can now expand P and Q in Taylor series about the center of the circle. This is
essentially an expansion in powers of R, so we keep only the first-order term, since the
higher-order terms will vanish in the limit that R → 0. We obtain

P (x0 + R cos φ, y0 + R sin φ)

= P (x0, y0) +
∂P

∂x

∣∣∣∣
x0,y0

R cos φ +
∂P

∂y

∣∣∣∣
x0,y0

R sin φ + · · · , (38)

Q(x0 + R cos φ, y0 + R sin φ)

= Q(x0, y0) +
∂Q

∂x

∣∣∣∣
x0,y0

R cos φ +
∂Q

∂y

∣∣∣∣
x0,y0

R sin φ + · · · . (39)

Substitution of these expansions into Eq. (37) yields

F = P (x0, y0)R
∫ 2π

0
cos φ dφ︸ ︷︷ ︸
= 0

+Q(x0, y0)R
∫ 2π

0
sin φ dφ︸ ︷︷ ︸
= 0

+
∂P

∂x

∣∣∣∣
x0,y0

R2
∫ 2π

0
cos2 φ dφ︸ ︷︷ ︸
= π

+
∂P

∂y

∣∣∣∣
x0,y0

R2
∫ 2π

0
sin φ cos φ dφ︸ ︷︷ ︸

= 0

+ · · ·

+
∂Q

∂x

∣∣∣∣
x0,y0

R2
∫ 2π

0
sin φ cos φ dφ︸ ︷︷ ︸

= 0

+
∂P

∂y

∣∣∣∣
x0,y0

R2
∫ 2π

0
sin2 φ dφ︸ ︷︷ ︸
= π

+ · · ·
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= πR2

(
∂P

∂x

∣∣∣∣
x0,y0

+
∂Q

∂y

∣∣∣∣
x0,y0

)
+ · · · (40)

Dividing both sides of this equation by the area A = πR2 of the circle and taking the
limit that R → 0 yields

lim
A→0

(
F

A

)
=

(
∂P

∂x
+

∂Q

∂y

) ∣∣∣∣
x0,y0

, (41)

which is the divergence of V at (x0, y0).
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