## First-Year Mathematics

1. The gradient of a function $f(x, y, z)$ is

$$
\begin{equation*}
\boldsymbol{\nabla} f=\frac{\partial f}{\partial x} \boldsymbol{i}+\frac{\partial f}{\partial y} \boldsymbol{j}+\frac{\partial f}{\partial z} \boldsymbol{k} \tag{1}
\end{equation*}
$$

where, for a function $f(x, y)$ of two variables, the last term is absent. The gradient at a point $\boldsymbol{r}_{0}=x_{0} \boldsymbol{i}+y_{0} \boldsymbol{j}+z_{0} \boldsymbol{k}$ is obtained by evaluating each of the partial derivatives at that point:

$$
\begin{equation*}
\left.\boldsymbol{\nabla} f\right|_{\boldsymbol{r}_{0}}=\left.\frac{\partial f}{\partial x} \boldsymbol{i}\right|_{\boldsymbol{r}_{0}}+\left.\frac{\partial f}{\partial y} \boldsymbol{j}\right|_{\boldsymbol{r}_{0}}+\left.\frac{\partial f}{\partial z} \boldsymbol{k}\right|_{\boldsymbol{r}_{0}} . \tag{2}
\end{equation*}
$$

(a) $f(x, y)=x^{2}-y^{2}$ at $(1,2)$. The gradient of $f$ is

$$
\begin{equation*}
\nabla f=2 x \boldsymbol{i}-2 y \boldsymbol{j} \tag{3}
\end{equation*}
$$

At $(1,2)$,

$$
\begin{equation*}
\left.\boldsymbol{\nabla}\left(x^{2}-y^{2}\right)\right|_{(1,2)}=2 \boldsymbol{i}-4 \boldsymbol{j} \tag{4}
\end{equation*}
$$

(b) $f(x, y, z)=x y+y z+x z$ at $(-1,-1,0)$. The gradient of $f$

$$
\begin{equation*}
\boldsymbol{\nabla} f=(y+z) \boldsymbol{i}+(x+z) \boldsymbol{j}+(x+y) \boldsymbol{k} \tag{5}
\end{equation*}
$$

At $(-1,-1,0)$,

$$
\begin{equation*}
\left.\boldsymbol{\nabla}(x y+y z+x z)\right|_{(-1,-1,0)}=-\boldsymbol{i}-\boldsymbol{j}-2 \boldsymbol{k} . \tag{6}
\end{equation*}
$$

(c) $f(x, y, z)=e^{x} \cos (y z)$ at $(1,0,1)$. The gradient of $f$ is

$$
\begin{equation*}
\boldsymbol{\nabla} f=e^{x} \cos (y z) \boldsymbol{i}-z e^{x} \sin (y z) \boldsymbol{i}-y e^{x} \sin (y z) \boldsymbol{i} \tag{7}
\end{equation*}
$$

At ( $1,0,1$ ).

$$
\begin{equation*}
\left.\boldsymbol{\nabla}\left[e^{x} \cos (y z)\right]\right|_{(1,0,1)}=e^{x} \boldsymbol{i} \tag{8}
\end{equation*}
$$

2. The directional derivative of $f$ along the direction of the unit vector $\boldsymbol{u}$ at the point $\boldsymbol{r}_{0}=x_{0} \boldsymbol{i}+y_{0} \boldsymbol{j}+z_{0} \boldsymbol{k}$ is

$$
\begin{equation*}
\frac{d f}{d s}=\left.(\boldsymbol{\nabla} f \cdot \boldsymbol{u})\right|_{\boldsymbol{r}_{0}} . \tag{9}
\end{equation*}
$$

(a) $f(x, y)=\sin x \sin y$ along $\boldsymbol{i}+\boldsymbol{j}$ at $\left(0, \frac{1}{4} \pi\right)$. The gradient of $f$ is

$$
\begin{equation*}
\boldsymbol{\nabla} f=\cos x \sin y \boldsymbol{i}+\sin x \cos y \boldsymbol{j} . \tag{10}
\end{equation*}
$$

The length of the given vector $|\boldsymbol{i}+\boldsymbol{j}|=\sqrt{2}$, so the corresponding unit vector is

$$
\begin{equation*}
\boldsymbol{u}=\frac{1}{\sqrt{2}}(\boldsymbol{i}+\boldsymbol{j})=\frac{1}{2} \sqrt{2}(\boldsymbol{i}+\boldsymbol{j}) . \tag{11}
\end{equation*}
$$

The directional derivative is thus given by

$$
\begin{equation*}
\boldsymbol{\nabla} f \cdot \boldsymbol{u}=\frac{1}{2} \sqrt{2}(\cos x \sin y+\sin x \cos y) . \tag{12}
\end{equation*}
$$

At $\left(0, \frac{1}{4} \pi\right)$,

$$
\begin{equation*}
\left.(\boldsymbol{\nabla} f \cdot \boldsymbol{u})\right|_{\left(0, \frac{1}{4} \pi\right)}=\frac{1}{2} \tag{13}
\end{equation*}
$$

(b) $f(x, y)=e^{-x^{2}-y^{2}}$ along $\boldsymbol{i}$ at $(0,1)$. The gradient of $f$ is

$$
\begin{equation*}
\boldsymbol{\nabla} f=-2 e^{-x^{2}-y^{2}}(x \boldsymbol{i}+y \boldsymbol{j}) . \tag{14}
\end{equation*}
$$

The vector $\boldsymbol{i}$ is already a unit vector, so the directional derivative is

$$
\begin{equation*}
\boldsymbol{\nabla} f \cdot \boldsymbol{u}=-2 x e^{-x^{2}-y^{2}} \tag{15}
\end{equation*}
$$

At $(0,1)$,

$$
\begin{equation*}
\left.(\boldsymbol{\nabla} f \cdot \boldsymbol{u})\right|_{(0,1)}=0 \tag{16}
\end{equation*}
$$

(c) $f(x, y, z)=x^{2}+y^{2}-z^{2}$ along $-\boldsymbol{i}-\boldsymbol{j}+\boldsymbol{k}$ at $(1,1,1)$. The gradient of $f$ is

$$
\begin{equation*}
\boldsymbol{\nabla} f=2 x \boldsymbol{i}+2 y \boldsymbol{j}-2 z \boldsymbol{k} \tag{17}
\end{equation*}
$$

The length of the vector $|\boldsymbol{- i}-\boldsymbol{j}+\boldsymbol{k}|=\sqrt{3}$, so the corresponding unit vector is

$$
\begin{equation*}
\boldsymbol{u}=\frac{1}{\sqrt{3}}(-\boldsymbol{i}-\boldsymbol{j}+\boldsymbol{k})=\frac{1}{3} \sqrt{3}(-\boldsymbol{i}-\boldsymbol{j}+\boldsymbol{k}), \tag{18}
\end{equation*}
$$

and the directional derivative is

$$
\begin{equation*}
\boldsymbol{\nabla} f \cdot \boldsymbol{u}=-\frac{2}{3} \sqrt{3}(x+y+z) \tag{19}
\end{equation*}
$$

At (1, 1, 1),

$$
\begin{equation*}
\left.(\boldsymbol{\nabla} f \cdot \boldsymbol{u})\right|_{(1,1,1)}=-2 \sqrt{3} \tag{20}
\end{equation*}
$$

3. The gradient of $f(x, y, z)=a x+b y+c z$ is

$$
\begin{equation*}
\boldsymbol{\nabla} f=a \boldsymbol{i}+b \boldsymbol{j}+c \boldsymbol{k} \tag{21}
\end{equation*}
$$

Since the gradient is normal to the surfaces of constant $f$, this vector must be normal to

$$
\begin{equation*}
a x+b y+c z=d \tag{22}
\end{equation*}
$$

which is the equation of a plane.
4. The equation of the tangent plane to a surface $f(x, y, z)=$ constant at a particular point is determined as follows.
(a) The gradient of $f$ at $\boldsymbol{r}_{0}$ is

$$
\begin{equation*}
\left.\boldsymbol{\nabla} f\right|_{\boldsymbol{r}_{0}}=\left.\frac{\partial f}{\partial x}\right|_{\boldsymbol{r}_{0}} i+\left.\frac{\partial f}{\partial y}\right|_{\boldsymbol{r}_{0}} \boldsymbol{j}+\left.\frac{\partial f}{\partial z}\right|_{\boldsymbol{r}_{0}} \boldsymbol{k} . \tag{23}
\end{equation*}
$$

(b) The tangent plane to the surface $f(x, y, z)=$ constant at $\boldsymbol{r}_{0}$ has the general form

$$
\begin{equation*}
a x+b y+c z=d \tag{24}
\end{equation*}
$$

where $a, b, c$, and $d$ are constants. The normal vector $\boldsymbol{n}$ to this plane is, from Part 3, given by

$$
\begin{equation*}
\boldsymbol{n}=a \boldsymbol{i}+b \boldsymbol{j}+c \boldsymbol{k} . \tag{25}
\end{equation*}
$$

Since this vector is parallel to the gradient at $\boldsymbol{r}_{0}$, we can equate the components of $\boldsymbol{n}$ and $\boldsymbol{\nabla} f$ to obtain

$$
\begin{equation*}
a=\left.\frac{\partial f}{\partial x}\right|_{\boldsymbol{r}_{0}}, \quad b=\left.\frac{\partial f}{\partial y}\right|_{\boldsymbol{r}_{0}}, \quad c=\left.\frac{\partial f}{\partial z}\right|_{\boldsymbol{r}_{0}} \tag{26}
\end{equation*}
$$

(c) The tangent plane must pass through the point $\boldsymbol{r}_{0}$. Thus, we must have that

$$
\begin{equation*}
d=a x_{0}+b y_{0}+c z_{0}=\left.x_{0} \frac{\partial f}{\partial x}\right|_{\boldsymbol{r}_{0}}+\left.y_{0} \frac{\partial f}{\partial y}\right|_{\boldsymbol{r}_{0}}+\left.z_{0} \frac{\partial f}{\partial z}\right|_{\boldsymbol{r}_{0}} . \tag{27}
\end{equation*}
$$

By combining Eqs. (24), (26), (27), the equation for the tangent plane is obtained as

$$
\begin{equation*}
\left.\left(x-x_{0}\right) \frac{\partial f}{\partial x}\right|_{\boldsymbol{r}_{0}}+\left.\left(y-y_{0}\right) \frac{\partial f}{\partial y}\right|_{\boldsymbol{r}_{0}}+\left.\left(z-z_{0}\right) \frac{\partial f}{\partial z}\right|_{\boldsymbol{r}_{0}}=0 . \tag{28}
\end{equation*}
$$

5. (a) The tangent plane to $x^{2}+y^{2}+z^{2}=1$ at $(0,0,1)$. The three partial derivatives evaluated at $(0,0,1)$ are

$$
\begin{align*}
& \left.\frac{\partial f}{\partial x}\right|_{(0,0,1)}=\left.2 x\right|_{(0,0,1)}=0  \tag{29}\\
& \left.\frac{\partial f}{\partial y}\right|_{(0,0,1)}=\left.2 y\right|_{(0,0,1)}=0  \tag{30}\\
& \left.\frac{\partial f}{\partial z}\right|_{(0,0,1)}=\left.2 z\right|_{(0,0,1)}=2 . \tag{31}
\end{align*}
$$

Thus, from Eq. (28), the equation of the tangent plane is

$$
\begin{equation*}
2(z-1)=0 \tag{32}
\end{equation*}
$$

or, simply,

$$
\begin{equation*}
z=1 \tag{33}
\end{equation*}
$$

Two views of the surface and the tangent plane are shown below:

(b) The tangent plane to $x^{2}+x y^{2}+y z=1$ at $(-1,2,2)$. The three partial derivatives evaluated at $(-1,2,2)$ are

$$
\begin{align*}
& \left.\frac{\partial f}{\partial x}\right|_{(-1,2,2)}=\left.\left(2 x+y^{2}\right)\right|_{(-1,2,2)}=2  \tag{34}\\
& \left.\frac{\partial f}{\partial y}\right|_{(-1,2,2)}=\left.(2 x y+z)\right|_{(-1,2,2)}=-2  \tag{35}\\
& \left.\frac{\partial f}{\partial z}\right|_{(-1,2,2)}=\left.y\right|_{(-1,2,2)}=2 \tag{36}
\end{align*}
$$

Thus, from Eq. (28), the equation of the tangent plane is

$$
\begin{equation*}
2(x+1)-2(y-2)+2(z-2)=0 \tag{37}
\end{equation*}
$$

or,

$$
\begin{equation*}
x-y+z=-1 \tag{38}
\end{equation*}
$$

Two views of the surface and the tangent plane are shown below:

(c) The tangent plane to $z=x^{2}+y^{2}$ at $(1,1,2)$. We first write this surface as $x^{2}+y^{2}-z=0$. The three partial derivatives evaluated at $(1,1,2)$ are then

$$
\begin{align*}
& \left.\frac{\partial f}{\partial x}\right|_{(1,1,2)}=\left.2 x\right|_{(1,1,2)}=2  \tag{39}\\
& \left.\frac{\partial f}{\partial y}\right|_{(1,1,2)}=\left.2 y\right|_{(1,1,2)}=2  \tag{40}\\
& \left.\frac{\partial f}{\partial z}\right|_{(1,1,2)}=-\left.1\right|_{(1,1,2)}=-1 . \tag{41}
\end{align*}
$$

Thus, from Eq. (28), the equation of the tangent plane is

$$
\begin{equation*}
2(x-1)+2(y-1)-(z-2)=0 \tag{42}
\end{equation*}
$$

or,

$$
\begin{equation*}
2 x+2 y-z=2 . \tag{43}
\end{equation*}
$$

Two views of the surface and the tangent plane are shown below:


6. All of the following identities are consequences of the definition of the gradient and the properties of partial derivatives.
(a) $\boldsymbol{\nabla}(a f+b g)=a \boldsymbol{\nabla} f+b \boldsymbol{\nabla} g$, where $a$ and $b$ are constants.

$$
\begin{align*}
\boldsymbol{\nabla}(a f+b g) & =\frac{\partial(a f+b g)}{\partial x} \boldsymbol{i}+\frac{\partial(a f+b g)}{\partial y} \boldsymbol{j}+\frac{\partial(a f+b g)}{\partial z} \boldsymbol{k} \\
& =\frac{\partial(a f)}{\partial x} \boldsymbol{i}+\frac{\partial(a f)}{\partial y} \boldsymbol{j}+\frac{\partial(a f)}{\partial z} \boldsymbol{k}+\frac{\partial(b g)}{\partial x} \boldsymbol{i}+\frac{\partial(b g)}{\partial y} \boldsymbol{j}+\frac{\partial(b g)}{\partial z} \boldsymbol{k} \\
& =a\left(\frac{\partial f}{\partial x} \boldsymbol{i}+\frac{\partial f}{\partial y} \boldsymbol{j}+\frac{\partial f}{\partial z} \boldsymbol{k}\right)+b\left(\frac{\partial g}{\partial x} \boldsymbol{i}+\frac{\partial g}{\partial y} \boldsymbol{j}+\frac{\partial g}{\partial z} \boldsymbol{k}\right) \\
& =a \boldsymbol{\nabla} f+b \boldsymbol{\nabla} g \tag{44}
\end{align*}
$$

(b) $\boldsymbol{\nabla}(f g)=g \nabla f+f \nabla g$.

$$
\begin{aligned}
\boldsymbol{\nabla}(f g) & =\frac{\partial(f g)}{\partial x} \boldsymbol{i}+\frac{\partial(f g)}{\partial y} \boldsymbol{j}+\frac{\partial(f g)}{\partial z} \boldsymbol{k} \\
& =\left(g \frac{\partial f}{\partial x}+f \frac{\partial g}{\partial x}\right) \boldsymbol{i}+\left(g \frac{\partial f}{\partial y}+f \frac{\partial g}{\partial y}\right) \boldsymbol{j}+\left(g \frac{\partial f}{\partial z}+f \frac{\partial g}{\partial z}\right) \boldsymbol{k}
\end{aligned}
$$

$$
\begin{align*}
& =g\left(\frac{\partial f}{\partial x} \boldsymbol{i}+\frac{\partial f}{\partial y} \boldsymbol{j}+\frac{\partial f}{\partial z} \boldsymbol{k}\right)+f\left(\frac{\partial g}{\partial x} \boldsymbol{i}+\frac{\partial g}{\partial y} \boldsymbol{j}+\frac{\partial g}{\partial z} \boldsymbol{k}\right) \\
& =g \boldsymbol{\nabla} f+f \boldsymbol{\nabla} g \tag{45}
\end{align*}
$$

(c) $\boldsymbol{\nabla}\left(f^{n}\right)=n f^{n-1} \nabla f$.

$$
\begin{align*}
\boldsymbol{\nabla}\left(f^{n}\right) & =\frac{\partial\left(f^{n}\right)}{\partial x} \boldsymbol{i}+\frac{\partial\left(f^{n}\right)}{\partial y} \boldsymbol{j}+\frac{\partial\left(f^{n}\right)}{\partial z} \boldsymbol{k} \\
& =\left(n f^{n-1} \frac{\partial f}{\partial x} \boldsymbol{i}+n f^{n-1} \frac{\partial f}{\partial y} \boldsymbol{j}+n f^{n-1} \frac{\partial f}{\partial z} \boldsymbol{k}\right) \\
& =n f^{n-1}\left(\frac{\partial f}{\partial x} \boldsymbol{i}+\frac{\partial f}{\partial y} \boldsymbol{j}+\frac{\partial f}{\partial z} \boldsymbol{k}\right) \\
& =\boldsymbol{\nabla} f \tag{46}
\end{align*}
$$

(d) $\boldsymbol{\nabla}\left(\frac{f}{g}\right)=\frac{1}{g^{2}}(g \nabla f-f \nabla g)$.

$$
\begin{align*}
\boldsymbol{\nabla}\left(\frac{f}{g}\right) & =\left[\frac{\partial}{\partial x}\left(\frac{f}{g}\right)\right] \boldsymbol{i}+\left[\frac{\partial}{\partial y}\left(\frac{f}{g}\right)\right] \boldsymbol{j}+\left[\frac{\partial}{\partial z}\left(\frac{f}{g}\right)\right] \boldsymbol{k} \\
& =\frac{1}{g^{2}}\left(g \frac{\partial f}{\partial x}-f \frac{\partial g}{\partial x}\right) \boldsymbol{i}+\frac{1}{g^{2}}\left(g \frac{\partial f}{\partial y}-f \frac{\partial g}{\partial y}\right) \boldsymbol{j}+\frac{1}{g^{2}}\left(g \frac{\partial f}{\partial z}-f \frac{\partial g}{\partial z}\right) \boldsymbol{k} \\
& =\frac{1}{g^{2}}\left(g \frac{\partial f}{\partial x} \boldsymbol{i}+g \frac{\partial f}{\partial y} \boldsymbol{j}+g \frac{\partial f}{\partial z} \boldsymbol{k}\right)-\frac{1}{g^{2}}\left(f \frac{\partial g}{\partial x} \boldsymbol{i}+f \frac{\partial g}{\partial y} \boldsymbol{j}+f \frac{\partial g}{\partial z} \boldsymbol{k}\right) \\
& =\frac{1}{g^{2}}(g \boldsymbol{\nabla} f-f \boldsymbol{\nabla} g) \tag{47}
\end{align*}
$$

7. For a differentiable scalar function $\phi(x, y, z)$, the line integral of the gradient of $\phi$ between two points $a$ and $b$ is

$$
\begin{align*}
\int_{a}^{b} \boldsymbol{\nabla} \phi \cdot d \boldsymbol{r} & =\int_{a}^{b}\left(\frac{\partial \phi}{\partial x} \boldsymbol{i}+\frac{\partial \phi}{\partial y} \boldsymbol{j}+\frac{\partial \phi}{\partial z} \boldsymbol{k}\right) \cdot(d x \boldsymbol{i}+d y \boldsymbol{j}+d z \boldsymbol{k}) \\
& =\int_{a}^{b}\left(\frac{\partial \phi}{\partial x} d x+\frac{\partial \phi}{\partial y} d y+\frac{\partial \phi}{\partial z} d z\right) \tag{48}
\end{align*}
$$

The right-hand side is recognized as the differential of $\phi$, so we can write

$$
\begin{equation*}
\int_{a}^{b} \boldsymbol{\nabla} \phi \cdot d \boldsymbol{r}=\int_{\phi(a)}^{\phi(b)} d \phi=\phi(b)-\phi(a) . \tag{49}
\end{equation*}
$$

The geometrical reasoning behind this result stems from the fact that the gradient is normal to the surfaces of constant $\phi$. The integrand of the line integral is the projection of the increment of the path onto $\boldsymbol{\nabla} \phi$. Thus, regardless of the path, only the projection of that path between the initial and final values of $\phi$ determine the value of the line integral.

