First-Year Mathematics

Solutions to Problem Set 6 February 11, 2005

1. The gradient of a function f(x,y, 2) is
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where, for a function f(x,y) of two variables, the last term is absent. The gradient at
a point 7o = xot + yo J + 2ok is obtained by evaluating each of the partial derivatives

at that point:
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(a) f(z,y) =2® —y? at (1,2). The gradient of f is

Vf=2xi—2yj. (3)
At (1,2),
(4)
(b) f(z,y,2) =xy+yz+xzat (—1,—1,0). The gradient of f
Vi=Ww+2)i+@x+2)j+(x+yk. (5)
At (=1,-1,0),
V(zy +yz+xz) (6)
(¢) f(z,y,2) =e€"cos(yz) at (1,0,1). The gradient of f is
Vf=e"cos(yz)i — ze®sin(yz) © — ye® sin(yz) ¢ . (7)
At (1,0,1).
V [e” cos(yz)] 2 (8)
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2. The directional derivative of f along the direction of the wunit vector u at the point
T0:$0i+y0j+20k is
df

A AN ©)

(a) f(z,y) =sinzsiny along ¢ + 3 at (0, ;7). The gradient of f is
Vf=cosxsinyt+sinzcosyj. (10)

The length of the given vector |¢ + j| = V2, so the corresponding unit vector is

u:%(iﬂ):%ﬂuﬂy (11)

The directional derivative is thus given by

Vi -u= %\/ﬁ(cosmsiny—l—sinxcosy). (12)
At (0, ),
(13)
(b) f(z,y) = e ¥ along ¢ at (0,1). The gradient of f is
Vi==2""Y(zi+yj). (14)
The vector ¢ is already a unit vector, so the directional derivative is
Vf-u=—2ze"Y, (15)
At (0,1),
(Vf-u)| =0. (16)
(0,1)
(c) f(z,y,2) =2®>+y*>— 2% along —i — 7 + k at (1,1,1). The gradient of f is
Vfi=2xi+2yj—2zk. (17)

The length of the vector | —4 — 7 + k| = V/3, so the corresponding unit vector is

u:%(—i—jJrk):%\/g(—i—jJrk), (18)



and the directional derivative is

Viu=-2V3xz+y+2). (19)
At (1,1,1),
(20)
3. The gradient of f(x,y,2) = ax 4+ by + cz is
Vf=at+bj+ck. (21)

Since the gradient is normal to the surfaces of constant f, this vector must be normal
to
ar +by+cz=d, (22)

which is the equation of a plane.

4. The equation of the tangent plane to a surface f(z,y,z) = constant at a particular
point is determined as follows.

(a) The gradient of f at 7 is
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(b) The tangent plane to the surface f(x,y, z) = constant at 7 has the general form
ar +by+cz=d, (24)

where a, b, ¢, and d are constants. The normal vector n to this plane is, from
Part 3, given by
n=at+bjy+ck. (25)

Since this vector is parallel to the gradient at ry, we can equate the components
of n and V f to obtain
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(c) The tangent plane must pass through the point ry. Thus, we must have that

d= axg+byo+cz0 =X~
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By combining Eqs. (24), (26), (27), the equation for the tangent plane is obtained

as
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5. (a) The tangent plane to 2> + y? + 22 = 1 at (0,0,1). The three partial derivatives

evaluated at (0,0,1) are
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=2z =0
(0,0,1) (0,0,1)
(0,0,1) (0,0,1)

= 2z =2.
(0,0,1) (0,0,1)

Thus, from Eq. (28), the equation of the tangent plane is

or, simply,

Two views of the surface and the tangent plane are shown below:

2(z—1)=0,

z=1.

(29)

(30)

(31)



(b) The tangent plane to 2+ zy*+yz = 1 at (—1,2,2). The three partial derivatives
evaluated at (—1,2,2) are
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Thus, from Eq. (28), the equation of the tangent plane is
Az +1)—2y—2)+2(z—2) =0, (37)

or,

(38)

Two views of the surface and the tangent plane are shown below:

(c) The tangent plane to z = 22 + y* at (1,1,2). We first write this surface as
22 4+ y* — 2 = 0. The three partial derivatives evaluated at (1,1,2) are then

91 = 2x =2 (39)
0xl(1,1,2) (1,1,2)

0

91 =2y =2 (40)
Y la,1,2) (1,1,2)

0

2 I (41)
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Thus, from Eq. (28), the equation of the tangent plane is
2z —1)+2y—1)—(z—2) =0, (42)

or,
20 +2y—z2=2. (43)

Two views of the surface and the tangent plane are shown below:

All of the following identities are consequences of the definition of the gradient and the
properties of partial derivatives.

(a) V(af +bg) =aV f+bVyg, where a and b are constants.
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(b) V(f9) =gV [+ [Vg.
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a ay a
=gV [+ [fVyg. (45)
(c) V(f")=nfr'Vf.
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7. For a differentiable scalar function ¢(zx,y,z), the line integral of the gradient of ¢

between two points a and b is

/abw.dr:/ab<8—ﬁ +g—jg+a—¢k> (dzi+dyj+dzk)

_/a (8% +a—zd +a—¢ ) (48)



The right-hand side is recognized as the differential of ¢, so we can write
b #(b)
[ vo-dr= [ do=60) - o(a). (49)

The geometrical reasoning behind this result stems from the fact that the gradient is
normal to the surfaces of constant ¢. The integrand of the line integral is the projection
of the increment of the path onto V¢. Thus, regardless of the path, only the projection
of that path between the initial and final values of ¢ determine the value of the line
integral.



