First-Year Mathematics

1. Find the gradient of the following functions at the given point:
(a) $f(x, y)=x^{2}-y^{2}$ at $(1,2)$.
(b) $f(x, y, z)=x y+y z+x z$ at $(-1,-1,0)$.
(c) $f(x, y, z)=e^{x} \cos (y z)$ at $(1,0,1)$.

Ans: (a) $2 \boldsymbol{i}-4 \boldsymbol{j} ;$ (b) $-\boldsymbol{i}-\boldsymbol{j}-2 \boldsymbol{k}$; (c) $e \boldsymbol{i}$.
2. Find the derivatives of each of the following functions along the given direction at the given point:
(a) $f(x, y)=\sin x \sin y$ along $\boldsymbol{i}+\boldsymbol{j}$ at $\left(0, \frac{1}{4} \pi\right)$.
(b) $f(x, y)=e^{-x^{2}-y^{2}}$ along \boldsymbol{i} at $(0,1)$.
(c) $f(x, y, z)=x^{2}+y^{2}-z^{2}$ along $-\boldsymbol{i}-\boldsymbol{j}+\boldsymbol{k}$ at $(1,1,1)$.

Ans: (a) $\frac{1}{2}$; (b) 0 ; (c) $-2 \sqrt{3}$.
3. The equation of a plane is

$$
a x+b y+c z=d
$$

where a, b, c, and d are constants. Show that the vector

$$
\boldsymbol{n}=a \boldsymbol{i}+b \boldsymbol{j}+c \boldsymbol{k}
$$

is normal to this plane.
4. Use the result of Part 3 to determine the tangent plane to a surface $f(x, y, z)=$ constant at a point $\boldsymbol{r}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$. Proceed as follows:
(a) Write down the expression for the gradient of f at \boldsymbol{r}_{0}.
(b) The vector ∇f is normal to the tangent plane at this point. Hence, deduce that the quantities a, b, and c in the equation of a plane are given by

$$
a=\left.\frac{\partial f}{\partial x}\right|_{\boldsymbol{r}_{0}}, \quad b=\left.\frac{\partial f}{\partial y}\right|_{\boldsymbol{r}_{0}}, \quad c=\left.\frac{\partial f}{\partial z}\right|_{\boldsymbol{r}_{0}}
$$

(c) The tangent plane must pass through the point \boldsymbol{r}_{0}. Use this to determine d :

$$
d=\left.x_{0} \frac{\partial f}{\partial x}\right|_{\boldsymbol{r}_{0}}+\left.y_{0} \frac{\partial f}{\partial y}\right|_{\boldsymbol{r}_{0}}+\left.z_{0} \frac{\partial f}{\partial z}\right|_{\boldsymbol{r}_{0}} .
$$

5. For each of the following surfaces, determine the tangent plane at the given point:
(a) $x^{2}+y^{2}+z^{2}=1$ at $(0,0,1)$.
(b) $x^{2}+x y^{2}+y z=1$ at $(-1,2,2)$.
(c) $z=x^{2}+y^{2}$ at $(1,1,2)$.

Ans: (a) $z=1$; (b) $x-y+z=-1$; (c) $2 x+2 y-z=2$.
6. Use the definition of the gradient to deduce the following properties:
(a) $\boldsymbol{\nabla}(a f+b g)=a \boldsymbol{\nabla} f+b \boldsymbol{\nabla} g$, where a and b are constants.
(b) $\boldsymbol{\nabla}(f g)=g \boldsymbol{\nabla} f+f \boldsymbol{\nabla} g$.
(c) $\boldsymbol{\nabla}\left(f^{n}\right)=n f^{n-1} \nabla f$.
(d) $\boldsymbol{\nabla}\left(\frac{f}{g}\right)=\frac{1}{g^{2}}(g \nabla f-f \nabla g)$.
7.* Given a differentiable scalar function $\phi(x, y, z)$, show that the line integral of the gradient of ϕ between two points a and b is independent of the path:

$$
\int_{a}^{b} \boldsymbol{\nabla} \phi \cdot d \boldsymbol{r}=\phi(b)-\phi(a)
$$

where $\boldsymbol{r}=x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}$. Use the properties of the gradient to provide a geometrical interpretation of this result.

