
First-Year Mathematics

Solutions to Problem Set 5 February 5, 2005

1. To write the line integral in terms of x alone, we use y = x2 to eliminate the factor of
y in the integrand:

I =
∫ 1

0
x2 dx =

(
x3

3

∣∣∣∣1
0

)
=

1

3
. (1)

To write the integral in terms of y alone, we have x = y1/2. Thus, since dy = 2x dx,

dx =
dy

2x
=

dy

2y1/2
. (2)

The integral becomes

I =
1

2

∫ 1

0

y dy

y1/2
=

1

2

∫ 1

0
y1/2 dy =

1

2

(
2

3
y3/2

∣∣∣∣2
0

)
=

1

3
. (3)

2. The relation x = 2y along the path enables us to express each term of the line integral
as an integral over x or y alone. By choosing to replace y with x in the first term and
x with y in the second term, using the fact that dx = 2 dy and 1 ≤ y ≤ 2, we obtain

I =
∫ 2

1

[
x

(
x

2

)
dx + (2y)2y dy

]
=

1

2

∫ 4

2
x2 dx + 4

∫ 2

1
y3 dy

=
1

2

(
x3

3

∣∣∣∣4
2

)
+ 4

(
y4

4

∣∣∣∣2
1

)

=
1

6
(64 − 8) + (16 − 1) =

28

3
+ 15 =

73

3
. (4)

3. Along the upper half-circle, we have

x = cos φ , y = sin φ , (5)

where 0 ≤ φ ≤ π. Then, with
dy = cos φ dφ , (6)

the integral can be written as

I =
∫
P

xy2 dy =
∫ π

0
cos φ sin2 φ(cos φ) dφ =

∫ π

0
cos2 φ sin2 φ dφ (7)
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The integral on the right-hand side can be evaluated as follows:∫ π

0
cos2 φ sin2 φ dφ =

1

4

∫ π

0
sin 2φ dφ =

1

8

∫ 2π

0
sin2 t dt =

π

8
. (8)

Thus,

I =
π

8
. (9)

4. The line integral ∫
P

[f(x, y) dx + g(x, y) dy]

is path-independent if, and only if

∂f

∂y
=

∂g

∂x

If the line integral is path-independent, the quantity f dx + g dy is said to be an exact
differential, in which case there is a potential function F such that

∂F

∂x
= f ,

∂F

∂y
= g ,

the integration of which yields F .

(a) f = x, g = y.
∂f

∂y
= 0 ,

∂g

∂x
= 0 , (10)

so the line integral is path-independent and the quantity x dx + y dy is exact.

(b) f = y, g = x.
∂f

∂y
= 1 ,

∂g

∂x
= 1 , (11)

so the line integral is path-independent and the quantity y dx + x dy is exact.

(c) f = y, g = −x.
∂f

∂y
= 1 ,

∂g

∂x
= −1 , (12)

so the line integral is path-dependent and the quantity y dx − x dy is inexact.
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(d) f =
x√

x2 + y2
, g =

y√
x2 + y2

.

∂f

∂y
= − xy

(x2 + y2)3/2
,

∂g

∂x
= − xy

(x2 + y2)3/2
, (13)

so the line integral is path-independent and the quantity

x dx√
x2 + y2

+
y dy√
x2 + y2

(14)

is exact.

(e) f = x cos y, g = y sin x.

∂f

∂y
= −x sin y ,

∂g

∂x
= y cos x , (15)

so the line integral is path-dependent and the quantity x cos y dx + y sin x dy is
inexact.

5. The procedure used to determine the potential function can be combined into a single
expression for F . Our derivation will also show that that condition

∂f

∂y
=

∂f

∂y
, (16)

is sufficient for the path-independence of the associated line integral,∫
P

[f(x, y) dx + g(x, y) dy] . (17)

In lectures we showed the necessity of this condition, so we can conclude that this
condition is equivalent to the path-independence of the line integral.

(a) The integral of ∂F/∂x = f from x to x0 is∫ x

x0

∂F (s, y)

∂s
ds =

∫ x

x0

f(s, y) ds . (18)

The variable s in the “x slot” of F and f is a dummy variable of integration. The
Fundamental Theorem of Calculus,∫ b

a
f(s) ds = F (b) − F (a) , f =

dF

dx
, (19)

can be used to evaluate the left-hand side of Eq. (18) as∫ x

x0

∂F (s, y)

∂s
ds = F (x, y) − F (x0, y) . (20)
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Therefore, Eq. (18) can be written as

F (x, y) = F (x0, y) +
∫ x

x0

f(s, y) ds . (21)

(b) By differentiating Eq. (21) with respect to y, we obtain

∂F

∂y
=

dF (x0, y)

dy
+

∫ x

x0

∂f(s, y)

∂y
ds . (22)

The integral in this expression can be simplified by using Eq. (16) in the form

∂f(s, y)

∂y
=

∂g(s, y)

∂s
. (23)

We can then evaluate the integral by again invoking the Fundamental Theorem
of Calculus in Eq. (19):∫ x

x0

∂f(s, y)

∂y
ds =

∫ x

x0

∂g(s, y)

∂s
ds = g(x, y) − g(x0, y) . (24)

This, Eq. (22) becomes

∂F

∂y
= g(x, y) − g(x0, y) +

dF (x0, y)

dy
. (25)

(c) By requiring that Eq. (25) to be equal to the second of Eqs. (16),

∂F

∂y
= g(x, y) − g(x0, y) +

dF (x0, y)

dy
= g(x, y) , (26)

we must have that
dF (x0, y)

dy
= g(x0, y) . (27)

Integrating this equation with respect to y and invoking the Fundamental Theo-
rem of Calculus in Eq. (19) yields∫ y

y0

g(x0, t) dt =
∫ y

y0

dF (x0, t)

dt
dt = F (x0, y) − F (x0, y0) , (28)

or,

F (x0, y) = F (x0, y0) +
∫ y

y0

g(x0, t) dt (29)
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By substituting this expression for F (x0, y) into Eq. (21), we obtain the following
expression for the potential function F :

F (x, y) = F (x0, y0) +
∫ x

x0

f(s, y) ds +
∫ y

y0

g(x0, t) dt . (30)

(d) The differentiation of Eq. (30) is carried out by invoking Eq. (??):

d

dx

[∫ x

a
f(s) ds

]
= f(x) (31)

Thus,

∂F

∂x
=

∂

∂x

[∫ x

x0

f(s, y) ds
]

= f(x) , (32)

∂F

∂y
=

∂

∂y

[∫ y

y0

g(x0, t) dt
]

= g(x) . (33)

6. The differentials in (a), (b), and (d) in Part 4 are exact. The application of Eq. (30)
to the determine the potentials is as follows:

(a) f = x, g = y. In the notation of Eq. (30),

f(s, y) = s , g(x0, t) = t . (34)

Therefore,

F (x, y) − F (x0, y0) =
∫ x

x0

s ds +
∫ y

y0

t dt

= 1
2
s2

∣∣∣∣x
x0

+ 1
2
t2

∣∣∣∣y
y0

= 1
2
(x2 − x2

0) + 1
2
(y2 − y2

0)

= 1
2
(x2 + y2) − 1

2
(x2

0 + y2
0) , (35)

so, to within an additive constant,

F (x, y) = 1
2
(x2 + y2) . (36)
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(b) f = y, g = x. In the notation of Eq. (30),

f(s, y) = y , g(x0, t) = x0 . (37)

Therefore,

F (x, y) − F (x0, y0) =
∫ x

x0

y ds +
∫

yy
0

x0 dt

= y(x − x0) + x0(y − y0)

= xy − x0y0 , (38)

so, to within an additive constant

F (x, y) = xy . (39)

(d) f =
x√

x2 + y2
, g =

y√
x2 + y2

. In the notation of Eq. (30),

f(s, y) =
s√

s2 + y2
, g(x0, t) =

t√
x2

0 + t2
. (40)

Therefore,

F (x, y) − F (x0, y0) =
∫ x

x0

s ds√
s2 + y2

+
∫ y

y0

t dt√
x2

0 + t2

=
√

s2 + y2

∣∣∣∣x
x0

+
√

x2
0 + t2

∣∣∣∣y
y0

=
√

x2 + y2 −
√

x2
0 + y2 +

√
x2

0 + y2 −
√

x2
0 + y2

0

=
√

x2 + y2 −
√

x2
0 + y2

0 , (41)

so, to within an additive constant,

F (x, y) =
√

x2 + y2 . (42)
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