First-Year Mathematics

1. To write the line integral in terms of x alone, we use $y=x^{2}$ to eliminate the factor of y in the integrand:

$$
\begin{equation*}
I=\int_{0}^{1} x^{2} d x=\left(\left.\frac{x^{3}}{3}\right|_{0} ^{1}\right)=\frac{1}{3} . \tag{1}
\end{equation*}
$$

To write the integral in terms of y alone, we have $x=y^{1 / 2}$. Thus, since $d y=2 x d x$,

$$
\begin{equation*}
d x=\frac{d y}{2 x}=\frac{d y}{2 y^{1 / 2}} . \tag{2}
\end{equation*}
$$

The integral becomes

$$
\begin{equation*}
I=\frac{1}{2} \int_{0}^{1} \frac{y d y}{y^{1 / 2}}=\frac{1}{2} \int_{0}^{1} y^{1 / 2} d y=\frac{1}{2}\left(\left.\frac{2}{3} y^{3 / 2}\right|_{0} ^{2}\right)=\frac{1}{3} \tag{3}
\end{equation*}
$$

2. The relation $x=2 y$ along the path enables us to express each term of the line integral as an integral over x or y alone. By choosing to replace y with x in the first term and x with y in the second term, using the fact that $d x=2 d y$ and $1 \leq y \leq 2$, we obtain

$$
\begin{align*}
I & =\int_{1}^{2}\left[x\left(\frac{x}{2}\right) d x+(2 y)^{2} y d y\right]=\frac{1}{2} \int_{2}^{4} x^{2} d x+4 \int_{1}^{2} y^{3} d y \\
& =\frac{1}{2}\left(\left.\frac{x^{3}}{3}\right|_{2} ^{4}\right)+4\left(\left.\frac{y^{4}}{4}\right|_{1} ^{2}\right) \\
& =\frac{1}{6}(64-8)+(16-1)=\frac{28}{3}+15=\frac{73}{3} . \tag{4}
\end{align*}
$$

3. Along the upper half-circle, we have

$$
\begin{equation*}
x=\cos \phi, \quad y=\sin \phi \tag{5}
\end{equation*}
$$

where $0 \leq \phi \leq \pi$. Then, with

$$
\begin{equation*}
d y=\cos \phi d \phi \tag{6}
\end{equation*}
$$

the integral can be written as

$$
\begin{equation*}
I=\int_{\mathcal{P}} x y^{2} d y=\int_{0}^{\pi} \cos \phi \sin ^{2} \phi(\cos \phi) d \phi=\int_{0}^{\pi} \cos ^{2} \phi \sin ^{2} \phi d \phi \tag{7}
\end{equation*}
$$

The integral on the right-hand side can be evaluated as follows:

$$
\begin{equation*}
\int_{0}^{\pi} \cos ^{2} \phi \sin ^{2} \phi d \phi=\frac{1}{4} \int_{0}^{\pi} \sin 2 \phi d \phi=\frac{1}{8} \int_{0}^{2 \pi} \sin ^{2} t d t=\frac{\pi}{8} . \tag{8}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
I=\frac{\pi}{8} \tag{9}
\end{equation*}
$$

4. The line integral

$$
\int_{\mathcal{P}}[f(x, y) d x+g(x, y) d y]
$$

is path-independent if, and only if

$$
\frac{\partial f}{\partial y}=\frac{\partial g}{\partial x}
$$

If the line integral is path-independent, the quantity $f d x+g d y$ is said to be an exact differential, in which case there is a potential function F such that

$$
\frac{\partial F}{\partial x}=f, \quad \frac{\partial F}{\partial y}=g
$$

the integration of which yields F.
(a) $f=x, g=y$.

$$
\begin{equation*}
\frac{\partial f}{\partial y}=0, \quad \frac{\partial g}{\partial x}=0 \tag{10}
\end{equation*}
$$

so the line integral is path-independent and the quantity $x d x+y d y$ is exact.
(b) $f=y, g=x$.

$$
\begin{equation*}
\frac{\partial f}{\partial y}=1, \quad \frac{\partial g}{\partial x}=1 \tag{11}
\end{equation*}
$$

so the line integral is path-independent and the quantity $y d x+x d y$ is exact.
(c) $f=y, g=-x$.

$$
\begin{equation*}
\frac{\partial f}{\partial y}=1, \quad \frac{\partial g}{\partial x}=-1 \tag{12}
\end{equation*}
$$

so the line integral is path-dependent and the quantity $y d x-x d y$ is inexact.
(d) $f=\frac{x}{\sqrt{x^{2}+y^{2}}}, g=\frac{y}{\sqrt{x^{2}+y^{2}}}$.

$$
\begin{equation*}
\frac{\partial f}{\partial y}=-\frac{x y}{\left(x^{2}+y^{2}\right)^{3 / 2}}, \quad \frac{\partial g}{\partial x}=-\frac{x y}{\left(x^{2}+y^{2}\right)^{3 / 2}} \tag{13}
\end{equation*}
$$

so the line integral is path-independent and the quantity

$$
\begin{equation*}
\frac{x d x}{\sqrt{x^{2}+y^{2}}}+\frac{y d y}{\sqrt{x^{2}+y^{2}}} \tag{14}
\end{equation*}
$$

is exact.
(e) $f=x \cos y, g=y \sin x$.

$$
\begin{equation*}
\frac{\partial f}{\partial y}=-x \sin y, \quad \frac{\partial g}{\partial x}=y \cos x \tag{15}
\end{equation*}
$$

so the line integral is path-dependent and the quantity $x \cos y d x+y \sin x d y$ is inexact.
5. The procedure used to determine the potential function can be combined into a single expression for F. Our derivation will also show that that condition

$$
\begin{equation*}
\frac{\partial f}{\partial y}=\frac{\partial f}{\partial y} \tag{16}
\end{equation*}
$$

is sufficient for the path-independence of the associated line integral,

$$
\begin{equation*}
\int_{\mathcal{P}}[f(x, y) d x+g(x, y) d y] \tag{17}
\end{equation*}
$$

In lectures we showed the necessity of this condition, so we can conclude that this condition is equivalent to the path-independence of the line integral.
(a) The integral of $\partial F / \partial x=f$ from x to x_{0} is

$$
\begin{equation*}
\int_{x_{0}}^{x} \frac{\partial F(s, y)}{\partial s} d s=\int_{x_{0}}^{x} f(s, y) d s \tag{18}
\end{equation*}
$$

The variable s in the " x slot" of F and f is a dummy variable of integration. The Fundamental Theorem of Calculus,

$$
\begin{equation*}
\int_{a}^{b} f(s) d s=F(b)-F(a), \quad f=\frac{d F}{d x} \tag{19}
\end{equation*}
$$

can be used to evaluate the left-hand side of Eq. (18) as

$$
\begin{equation*}
\int_{x_{0}}^{x} \frac{\partial F(s, y)}{\partial s} d s=F(x, y)-F\left(x_{0}, y\right) \tag{20}
\end{equation*}
$$

Therefore, Eq. (18) can be written as

$$
\begin{equation*}
F(x, y)=F\left(x_{0}, y\right)+\int_{x_{0}}^{x} f(s, y) d s \tag{21}
\end{equation*}
$$

(b) By differentiating Eq. (21) with respect to y, we obtain

$$
\begin{equation*}
\frac{\partial F}{\partial y}=\frac{d F\left(x_{0}, y\right)}{d y}+\int_{x_{0}}^{x} \frac{\partial f(s, y)}{\partial y} d s \tag{22}
\end{equation*}
$$

The integral in this expression can be simplified by using Eq. (16) in the form

$$
\begin{equation*}
\frac{\partial f(s, y)}{\partial y}=\frac{\partial g(s, y)}{\partial s} \tag{23}
\end{equation*}
$$

We can then evaluate the integral by again invoking the Fundamental Theorem of Calculus in Eq. (19):

$$
\begin{equation*}
\int_{x_{0}}^{x} \frac{\partial f(s, y)}{\partial y} d s=\int_{x_{0}}^{x} \frac{\partial g(s, y)}{\partial s} d s=g(x, y)-g\left(x_{0}, y\right) \tag{24}
\end{equation*}
$$

This, Eq. (22) becomes

$$
\begin{equation*}
\frac{\partial F}{\partial y}=g(x, y)-g\left(x_{0}, y\right)+\frac{d F\left(x_{0}, y\right)}{d y} \tag{25}
\end{equation*}
$$

(c) By requiring that Eq. (25) to be equal to the second of Eqs. (16),

$$
\begin{equation*}
\frac{\partial F}{\partial y}=g(x, y)-g\left(x_{0}, y\right)+\frac{d F\left(x_{0}, y\right)}{d y}=g(x, y) \tag{26}
\end{equation*}
$$

we must have that

$$
\begin{equation*}
\frac{d F\left(x_{0}, y\right)}{d y}=g\left(x_{0}, y\right) \tag{27}
\end{equation*}
$$

Integrating this equation with respect to y and invoking the Fundamental Theorem of Calculus in Eq. (19) yields

$$
\begin{equation*}
\int_{y_{0}}^{y} g\left(x_{0}, t\right) d t=\int_{y_{0}}^{y} \frac{d F\left(x_{0}, t\right)}{d t} d t=F\left(x_{0}, y\right)-F\left(x_{0}, y_{0}\right) \tag{28}
\end{equation*}
$$

or,

$$
\begin{equation*}
F\left(x_{0}, y\right)=F\left(x_{0}, y_{0}\right)+\int_{y_{0}}^{y} g\left(x_{0}, t\right) d t \tag{29}
\end{equation*}
$$

By substituting this expression for $F\left(x_{0}, y\right)$ into Eq. (21), we obtain the following expression for the potential function F :

$$
\begin{equation*}
F(x, y)=F\left(x_{0}, y_{0}\right)+\int_{x_{0}}^{x} f(s, y) d s+\int_{y_{0}}^{y} g\left(x_{0}, t\right) d t \tag{30}
\end{equation*}
$$

(d) The differentiation of Eq. (30) is carried out by invoking Eq. (??):

$$
\begin{equation*}
\frac{d}{d x}\left[\int_{a}^{x} f(s) d s\right]=f(x) \tag{31}
\end{equation*}
$$

Thus,

$$
\begin{align*}
& \frac{\partial F}{\partial x}=\frac{\partial}{\partial x}\left[\int_{x_{0}}^{x} f(s, y) d s\right]=f(x), \tag{32}\\
& \frac{\partial F}{\partial y}=\frac{\partial}{\partial y}\left[\int_{y_{0}}^{y} g\left(x_{0}, t\right) d t\right]=g(x) . \tag{33}
\end{align*}
$$

6. The differentials in (a), (b), and (d) in Part 4 are exact. The application of Eq. (30) to the determine the potentials is as follows:
(a) $f=x, g=y$. In the notation of Eq. (30),

$$
\begin{equation*}
f(s, y)=s, \quad g\left(x_{0}, t\right)=t \tag{34}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
F(x, y) & -F\left(x_{0}, y_{0}\right)=\int_{x_{0}}^{x} s d s+\int_{y_{0}}^{y} t d t \\
& =\left.\frac{1}{2} s^{2}\right|_{x_{0}} ^{x}+\left.\frac{1}{2} t^{2}\right|_{y_{0}} ^{y} \\
& =\frac{1}{2}\left(x^{2}-x_{0}^{2}\right)+\frac{1}{2}\left(y^{2}-y_{0}^{2}\right) \\
& =\frac{1}{2}\left(x^{2}+y^{2}\right)-\frac{1}{2}\left(x_{0}^{2}+y_{0}^{2}\right), \tag{35}
\end{align*}
$$

so, to within an additive constant,

$$
\begin{equation*}
F(x, y)=\frac{1}{2}\left(x^{2}+y^{2}\right) \tag{36}
\end{equation*}
$$

(b) $f=y, g=x$. In the notation of Eq. (30),

$$
\begin{equation*}
f(s, y)=y, \quad g\left(x_{0}, t\right)=x_{0} \tag{37}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
F(x, y) & -F\left(x_{0}, y_{0}\right)=\int_{x_{0}}^{x} y d s+\int_{y_{0}^{y}} x_{0} d t \\
& =y\left(x-x_{0}\right)+x_{0}\left(y-y_{0}\right) \\
& =x y-x_{0} y_{0} \tag{38}
\end{align*}
$$

so, to within an additive constant

$$
\begin{equation*}
F(x, y)=x y \tag{39}
\end{equation*}
$$

(d) $f=\frac{x}{\sqrt{x^{2}+y^{2}}}, g=\frac{y}{\sqrt{x^{2}+y^{2}}}$. In the notation of Eq. (30),

$$
\begin{equation*}
f(s, y)=\frac{s}{\sqrt{s^{2}+y^{2}}}, \quad g\left(x_{0}, t\right)=\frac{t}{\sqrt{x_{0}^{2}+t^{2}}} \tag{40}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
F(x, y) & -F\left(x_{0}, y_{0}\right)=\int_{x_{0}}^{x} \frac{s d s}{\sqrt{s^{2}+y^{2}}}+\int_{y_{0}}^{y} \frac{t d t}{\sqrt{x_{0}^{2}+t^{2}}} \\
& =\left.\sqrt{s^{2}+y^{2}}\right|_{x_{0}} ^{x}+\left.\sqrt{x_{0}^{2}+t^{2}}\right|_{y_{0}} ^{y} \\
& =\sqrt{x^{2}+y^{2}}-\sqrt{x_{0}^{2}+y^{2}}+\sqrt{x_{0}^{2}+y^{2}}-\sqrt{x_{0}^{2}+y_{0}^{2}} \\
& =\sqrt{x^{2}+y^{2}}-\sqrt{x_{0}^{2}+y_{0}^{2}} \tag{41}
\end{align*}
$$

so, to within an additive constant,

$$
\begin{equation*}
F(x, y)=\sqrt{x^{2}+y^{2}} \tag{42}
\end{equation*}
$$

