First-Year Mathematics

1. Evaluate the line integral

$$
I=\int_{\mathcal{P}} y d x
$$

along the path $y=x^{2}$ from $(0,0)$ to $(1,1)$ in two ways: by writing the line integral in terms of (i) x alone, and (ii) in terms of y alone.
2. Evaluate the integral

$$
I=\int_{\mathcal{P}}\left(x y d x+x^{2} y d y\right)
$$

along the path given by $x=2 y$ from $(2,1)$ to $(4,2)$.
3. Evaluate the integral

$$
I=\int_{\mathcal{P}} x y^{2} d y
$$

over the upper half-circle $x^{2}+y^{2}=1$ from $(1,0)$ to $(-1,0)$.
Hint: Use the fact that, along $\mathcal{P}, x=\cos \phi$ and $y=\sin \phi$, where $0 \leq \phi \leq \pi$ to express the line integral in terms of ϕ.
4. For each of the following pairs of functions f and g, determine if the line integral

$$
\int_{\mathcal{P}}[f(x, y) d x+g(x, y) d y]
$$

is path-dependent or path-independent.
(a) $f=x, g=y$.
(b) $f=y, g=x$.
(c) $f=y, g=-x$.
(d) $f=\frac{x}{\sqrt{x^{2}+y^{2}}}, g=\frac{y}{\sqrt{x^{2}+y^{2}}}$.
(e) $f=x \cos y, g=y \sin x$.
5.* We showed in lectures that, if

$$
\begin{equation*}
\oint_{\mathcal{C}}[f(x, y) d x+g(x, y) d y]=0 \tag{1}
\end{equation*}
$$

for any closed path \mathcal{C}, then the functions f and g satisfy

$$
\begin{equation*}
\frac{\partial f}{\partial y}=\frac{\partial g}{\partial x} \tag{2}
\end{equation*}
$$

This is an "integrability" condition that implies the existence of a potential function F such that

$$
\begin{equation*}
\frac{\partial F}{\partial x}=f, \quad \frac{\partial F}{\partial y}=g \tag{3}
\end{equation*}
$$

We will show here how to use these equations to obtain a formula for F.
(a) Use the Fundamental Theorem of Calculus to integrate $\partial F / \partial x=f$ from some initial point x_{0} to x, while holding y fixed. Show that the result is

$$
\begin{equation*}
F(x, y)=F\left(x_{0}, y\right)+\int_{x_{0}}^{x} f(s, y) d s \tag{4}
\end{equation*}
$$

(b) Differentiate (4) with respect to y, then use (2) and the Fundamental Theorem of Calculus once more to obtain

$$
\begin{equation*}
\frac{\partial F}{\partial y}=g(x, y)-g\left(x_{0}, y\right)+\frac{d F\left(x_{0}, y\right)}{d y} \tag{5}
\end{equation*}
$$

(c) By requiring that

$$
\begin{equation*}
\frac{\partial F(x, y)}{\partial y}=g(x, y) \tag{6}
\end{equation*}
$$

deduce that

$$
\frac{d F\left(x_{0}, y\right)}{d y}=g\left(x_{0}, y\right)
$$

Hence, use the Fundamental Theorem of Calculus again to obtain the following expression for $F\left(x_{0}, y\right)$:

$$
\begin{equation*}
F(x, y)=\int_{x_{0}}^{x} f(s, y) d s+\int_{y_{0}}^{y} g\left(x_{0}, t\right) d t+F\left(x_{0}, y_{0}\right), \tag{7}
\end{equation*}
$$

where y_{0} is the initial point along the y-axis.
(d) By explicitly differentiating the expression for $F(x, y)$, verify that $\partial F / \partial x=f$ and $\partial F / \partial y=g$.
6.* Apply the result of Part 5(c) to each of the exact differentials in Part 4 to obtain the potential functions of those differentials.

