First-Year Mathematics

Solutions to Problem Set 4

1. In cylindrical coordinates,

$$
\begin{equation*}
x=r \cos \phi, \quad y=r \sin \phi, \quad z=z \tag{1}
\end{equation*}
$$

the equation

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}}+\frac{z^{2}}{b^{2}}=1 \tag{2}
\end{equation*}
$$

becomes

$$
\begin{equation*}
\frac{r^{2} \cos ^{2} \phi}{a^{2}}+\frac{r^{2} \sin ^{2} \phi}{a^{2}}+\frac{z^{2}}{b^{2}}=\frac{r^{2}}{a^{2}}+\frac{z^{2}}{b^{2}}=1 \tag{3}
\end{equation*}
$$

The ranges of r and ϕ are

$$
\begin{equation*}
0 \leq r \leq a, \quad 0 \leq \phi<2 \pi \tag{4}
\end{equation*}
$$

The range of z is bounded by the surface in Eq. (3) which, when solved for z is

$$
\begin{equation*}
z=b\left(1-\frac{r^{2}}{a^{2}}\right)^{1 / 2} \tag{5}
\end{equation*}
$$

Hence, the range of z within the volume is

$$
\begin{equation*}
-b\left(1-\frac{r^{2}}{a^{2}}\right)^{1 / 2} \leq z \leq b\left(1-\frac{r^{2}}{a^{2}}\right)^{1 / 2} \tag{6}
\end{equation*}
$$

The volume bounded by V is thereby given by

$$
\begin{align*}
V & =\int_{0}^{a} r d r \underbrace{\int_{0}^{2 \pi} d \phi}_{2 \pi} \underbrace{\int_{-b \sqrt{1-r^{2} / a^{2}}}^{b \sqrt{1-r^{2} / a^{2}}} d z}_{2 b \sqrt{1-r^{2} / a^{2}}} \\
& =4 \pi b \int_{0}^{a} r \sqrt{1-r^{2} / a^{2}} d r \\
& =4 \pi b \underbrace{\left[-\left.\frac{a^{2}}{3}\left(1-\frac{r^{2}}{a^{2}}\right)^{3 / 2}\right|_{0} ^{a}\right]}_{\frac{1}{3} a^{2}} \\
& =\frac{4}{3} \pi a^{2} b \tag{7}
\end{align*}
$$

Thus, in cylindrical coordinates,

$$
\begin{align*}
\iiint_{V} z^{2} d x d y d z & =\int_{0}^{a} r d r \underbrace{\int_{0}^{2 \pi} d \phi}_{2 \pi} \int_{-b \sqrt{1-r^{2} / a^{2}}}^{b \sqrt{1-r^{2} / a^{2}}} z^{2} d z \\
& =2 \pi \int_{0}^{a} r d r\left(\left.\frac{z^{3}}{3}\right|_{-b \sqrt{1-r^{2} / a^{2}}} ^{b \sqrt{1-r^{2} / a^{2}}}\right) \\
& =\frac{4}{3} \pi b^{3} \int_{0}^{a} r\left(1-r^{2} / a^{2}\right)^{3 / 2} d r \\
& =\frac{4}{3} \pi b^{3} \underbrace{\left[-\left.\frac{a^{2}}{5}\left(1-\frac{r^{2}}{a^{2}}\right)^{5 / 2}\right|_{0} ^{a}\right]}_{\frac{1}{5} a^{2}} \\
& =\frac{4}{15} \pi a^{2} b^{3} . \tag{8}
\end{align*}
$$

2. The surface $\left(x^{2}+y^{2}+z^{2}\right)^{2}=2 z\left(x^{2}+y^{2}\right)$ is shown below:

(a) In spherical polar coordinates

$$
\begin{equation*}
x=r \cos \phi \sin \theta, \quad y=r \sin \phi \sin \theta, \quad z=r \cos \phi \tag{9}
\end{equation*}
$$

the surface

$$
\begin{equation*}
\left(x^{2}+y^{2}+z^{2}\right)^{2}=2 z\left(x^{2}+y^{2}\right) \tag{10}
\end{equation*}
$$

becomes

$$
\begin{equation*}
r^{4}=2 r \cos \theta\left(r^{2} \cos ^{2} \phi \sin ^{2} \theta+r^{2} \sin ^{2} \phi \sin ^{2} \theta\right)=2 r^{3} \cos \theta \sin ^{2} \theta, \tag{11}
\end{equation*}
$$

or,

$$
\begin{equation*}
r=2 \cos \theta \sin ^{2} \theta \tag{12}
\end{equation*}
$$

(b) The equation of the surface places no restrictions on ϕ, so this is a surface of revolution, which implies that

$$
\begin{equation*}
0 \leq \phi<2 \pi \tag{13}
\end{equation*}
$$

Since r is a non-negative quantity, the right-hand side of Eq. (12) must also be non-negative. The factor of $\sin ^{2} \phi$ provides no restriction on θ, but the factor of $\cos \theta$. To ensure that r is positive, we must restrict the range of θ to

$$
\begin{equation*}
0 \leq \theta \leq \frac{1}{2} \pi \tag{14}
\end{equation*}
$$

The cross-section of the surface in the $x-z$ plane is shown below:

The lower bound of r is 0 and the upper bound of r is determined by the surface itself:

$$
\begin{equation*}
0 \leq r \leq 2 \cos \theta \sin ^{2} \theta \tag{15}
\end{equation*}
$$

(c) The volume enclosed by the surface is thus expressed as

$$
V=\underbrace{\int_{0}^{2 \pi} d \phi}_{2 \pi} \int_{0}^{\frac{1}{2} \pi} \sin \theta d \theta \int_{0}^{2 \cos \theta \sin ^{2} \theta} r^{2} d r
$$

$$
\begin{align*}
& =2 \pi \int_{0}^{\frac{1}{2} \pi} \sin \theta d \theta \underbrace{\left(\left.\frac{r^{3}}{3}\right|_{0} ^{2 \cos \theta \sin ^{2} \theta}\right)}_{\frac{8}{3} \cos ^{3} \theta \sin ^{6} \theta} \\
& =\frac{16 \pi}{3} \int_{0}^{\frac{1}{2} \pi} \cos ^{3} \theta \sin ^{7} \theta d \theta . \tag{16}
\end{align*}
$$

Now, using the fact that $\cos ^{2} \theta=1-\sin ^{2} \theta$, the integrand in the last equation can be written as

$$
\begin{align*}
V & =\frac{16 \pi}{3} \int_{0}^{\frac{1}{2} \pi} \cos ^{2} \theta \cos \theta \sin ^{7} \theta d \theta \\
& =\frac{16 \pi}{3} \int_{0}^{\frac{1}{2} \pi}\left(1-\sin ^{2} \theta\right) \cos \theta \sin ^{7} \theta d \theta \\
& =\frac{16 \pi}{3} \int_{0}^{\frac{1}{2} \pi} \cos \theta \sin ^{7} \theta d \theta-\frac{2 \pi}{3} \int_{0}^{\frac{1}{2} \pi} \cos \theta \sin ^{9} \theta d \theta \\
& =\frac{16 \pi}{3}\left(\left.\frac{1}{8} \sin ^{8} \theta\right|_{0} ^{\frac{1}{2} \pi}\right)-\frac{16 \pi}{3}\left(\left.\frac{1}{10} \sin ^{1} 0 \theta\right|_{0} ^{\frac{1}{2} \pi}\right) \\
& =\frac{16 \pi}{3} \underbrace{\left(\frac{1}{8}-\frac{1}{10}\right)}_{\frac{1}{40}}=\frac{16 \pi}{120}=\frac{2 \pi}{15} . \tag{17}
\end{align*}
$$

3. (a) The volume element of the spherical shell at (r, θ, ϕ) of extent $d r, d \theta$, and $d \phi$ is the incremental volume element in spherical polar coordinates:

$$
\begin{equation*}
r^{2} \sin \theta d r d \theta d \phi \tag{18}
\end{equation*}
$$

Given that the mass density of the spherical shell has the uniform value ρ, the mass contained within this volume element is

$$
\begin{equation*}
\rho r^{2} \sin \theta d r d \theta d \phi \tag{19}
\end{equation*}
$$

(b) The gravitational potential energy U between two point masses m and M separated by a distance r is

$$
\begin{equation*}
U=-\frac{G m M}{r} \tag{20}
\end{equation*}
$$

The volume elements calculated in (a) which correspond to the same polar angle θ all lie at the same distance s from the point mass. Hence, the total potential
energy $d U$ between the corresponding masses and the point mass is obtained by integrating over the azimuthal angle ϕ :

$$
\begin{equation*}
d U=-\int_{0}^{2 \pi} d \phi\left(\frac{G m}{s} \rho r^{2} \sin \theta d r d \theta\right)=-\frac{G m}{s}\left(2 \pi \rho r^{2} d r \sin \theta d \theta\right) \tag{21}
\end{equation*}
$$

By identifying the mass in the ring at polar angle θ as

$$
\begin{equation*}
d M=2 \pi \rho r^{2} d r \sin \theta d \theta \tag{22}
\end{equation*}
$$

we can write the gravitational potential energy between the mass in this ring and the point mass as

$$
\begin{equation*}
d U=-\frac{G m d M}{s} . \tag{23}
\end{equation*}
$$

(c) The volume of the spherical shell is $4 \pi r^{2} d r$. The mass M contained within the shell is, therefore,

$$
\begin{equation*}
M=4 \pi r^{2} \rho d r \tag{24}
\end{equation*}
$$

so the quantity $d M$ calculated in Part (b) can be written in terms of M as

$$
\begin{equation*}
d M=\frac{1}{2} M \sin \theta d \theta \tag{25}
\end{equation*}
$$

Thus, the gravitational potential energy $d U$ thus becomes

$$
\begin{equation*}
d U=-\frac{G m M \sin \theta d \theta}{2 s} . \tag{26}
\end{equation*}
$$

(d) Referring to the diagram below

we see that the distance s from the point mass at R to the shell is

$$
\begin{aligned}
s^{2} & =(R-r \cos \theta)^{2}+(r \sin \theta)^{2} \\
& =R^{2}-2 R r \cos \theta+r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta \\
& =R^{2}-2 R r \cos \theta+r^{2} .
\end{aligned}
$$

Thus, in the integral

$$
\begin{equation*}
U=-\frac{1}{2} G m M \int_{0}^{\pi} \frac{\sin \theta d \theta}{s(\theta)} \tag{27}
\end{equation*}
$$

changing variables from θ to s requires that we (i) determine the transformed integration element, (ii) change variables in the integrand, and (iii) change the limits of integration. Taking the differential of s^{2}, we obtain
which yields

$$
\begin{equation*}
d \theta=\frac{s d s}{r R \sin \theta} \tag{29}
\end{equation*}
$$

At $\theta=0, s^{2}=(R-r)^{2}$, so $s=R-r$ and at $\theta=\pi, s^{2}=(R+r)^{2}$, so $s=R+r$. Thus, the integral determining U is transformed to

$$
\begin{equation*}
U=-\frac{G m M}{2 r R} \int_{R-r}^{R+r} d s=-\frac{G m M}{R} \tag{30}
\end{equation*}
$$

