First-Year Mathematics

1. Evaluate the integral

$$
\iiint_{V} z^{2} d x d y d z
$$

over the volume V enclosed by the surface

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}}+\frac{z^{2}}{b^{2}}=1,
$$

where a and b are positive constants. Proceed by transforming the integral to cylindrical coordinates. Verify that you have the correct integration limits by calculating the volume V as

$$
\iiint_{V} d x d y d z=\frac{4}{3} \pi a^{2} b
$$

Hence, obtain

$$
\iiint_{V} z^{2} d x d y d z=\frac{4}{15} \pi a^{2} b^{3} .
$$

2. Use spherical polar coordinates to determine the volume enclosed by the surface

$$
\left(x^{2}+y^{2}+z^{2}\right)^{2}=2 z\left(x^{2}+y^{2}\right)
$$

by following the steps below:
(a) Show that, in spherical polar coordinates, the equation of the surface is

$$
r=2 \cos \theta \sin ^{2} \theta .
$$

(b) To determine the ranges of integration, observe first that the equation places no restriction on the azimuthal angle ϕ, and that r must be a positive quantity. Hence, deduce that

$$
0 \leq \phi<2 \pi, \quad 0 \leq \theta \leq \frac{1}{2} \pi .
$$

Finally, deduce the range of r from the equation of the surface bounding the volume.
(c) Evaluate the radial and azimuthal integrals to obtain the volume V as

$$
V=\frac{16 \pi}{3} \int_{0}^{\frac{1}{2} \pi} \cos ^{3} \theta \sin ^{7} \theta d \theta
$$

Use the fact that $\cos ^{2} \theta=1-\sin ^{2} \theta$ to express this integral as the sum of two simpler integrals to obtain

$$
V=\frac{2 \pi}{15}
$$

3. Consider a spherical shell of radius r and thickness $d r$ that is centered at the origin and has a uniform mass density ρ. Suppose a point particle of mass m is placed at a distance $R(R>r)$ from the origin. By following the steps below, determine the gravitational potential energy between the shell and the point mass.
(a) Use a coordinate system whose z-axis coincides with the direction from the origin to the particle. For a fixed polar angle θ, consider a ring of width $d \theta$ and show that the volume corresponding to an infinitesimal variation $d \phi$ of the azimuthal angle is

$$
r^{2} \sin \theta d r d \theta d \phi
$$

and that the mass contained within this elemental volume is

$$
\rho r^{2} \sin \theta d r d \theta d \phi
$$

(b) As ϕ is varied from 0 to 2π, the corresponding mass elements calculated in (a) all lie at the same distance s from the point mass. Hence, deduce that the gravitational potential energy $d U$ between the ring at θ and the point mass is

$$
d U=-\frac{G m d M}{s}
$$

where $d M$ is the mass contained in the ring:

$$
d M=2 \pi \rho r^{2} d r \sin \theta d \theta
$$

(c) Show that the total mass M in the spherical shell is

$$
M=4 \pi r^{2} \rho d r
$$

and, therefore, that the gravitational potential calculated in (b) is

$$
d U=-\frac{G m M \sin \theta d \theta}{2 s} .
$$

(d) The distance s is a function of $\theta, s=s(\theta)$, so the total gravitational potential energy U between the spherical shell and the point mass is

$$
U=-\frac{1}{2} G m M \int_{0}^{\pi} \frac{\sin \theta d \theta}{s(\theta)} .
$$

For a polar angle θ, show that the distance s from the shell to the point mass is

$$
s^{2}=R^{2}-2 r R \cos \theta+r^{2}
$$

Use this to change variables in the above integral from θ to s and show that U becomes

$$
U=-\frac{G m M}{2 r R} \int_{R-r}^{R+r} d s=-\frac{G m M}{R} .
$$

This result demonstrates that the gravitational potential energy is equal to that of two point masses separated by a distance R. Thus, the effect of the spherical shell of mass has been replaced by that of a point particle situated at the origin with the same total mass!

