
First-Year Mathematics

Solutions to Problem Set 3 January 21, 2005

1. The region in the x-y plane bounded by the line y = 1 and the parabola y = x2 is
shown shaded in the figure below:
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(a) The area of this region is calculated in rectangular coordinates. By taking the
range of x as

−1 ≤ x ≤ 1 , (1)

the corresponding range of y is bounded from below by the parabola y = x2 and
from above by the line y = 1:

x2 ≤ y ≤ 1 . (2)

The area is thereby represented by the following double integral:
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(b) The integral of f(x, y) = x2 over this region is given by
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2. The integration region is bounded by the line y = 1
2

and the unit semicircle x2+y2 = 1,
as shown in the figure below:
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(a) The area of this region is calculated in rectangular coordinates. The calculation
is simpler if the integral over x is carried out before the integral over y. The range
of y is then given by

1
2
≤ y ≤ 1 , (5)

and the corresponding range of x is bounded from the left and right by the bound-
ary of the unit circle:

−
√

1 − y2 ≤ x ≤
√

1 − y2 . (6)

The area is now represented by the double integral
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This integral is evaluated by trigonometric substitution. Accordingly, we change
variables to y = sin t. Then,

√
1 − y2 dy =

√
1 − sin2 t cos t dt = cos2 t dt , (8)
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and
y = 1

2
−→ t = 1

6
π , y = 1 −→ t = 1

2
π . (9)

Thus, the integral becomes
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where we have used the result in Part 6 of Classwork 1.

(b) The integral of f(x, y) = x + y over this region is written as the sum of two
integrals:
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Note that the first integral vanishes because the region is symmetric about the
y-axis and x is an odd function. To evaluate the remaining integral we need to
determine the anti-derivative of the integrand. This is accomplished by observing
that, since

d

dy
(1 − y2)3/2 = 3

2
(1 − y2)1/2(−2y) = −3y(1 − y2)1/2 , (12)

the anti-derivative of 2
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Hence, the integral of f over the region is
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3. To evaluate the function f(x, y) = xy over the shaded region shown below,
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we use polar coordinates. The range of r within this region is bounded by the circles
with radii 1 and 2, so

1 ≤ r ≤ 2 . (15)

The range of φ is between the x-axis (φ = 0) and the y-axis (y = 1
2
π):

0 ≤ φ ≤ 1
2
π . (16)

In polar coordinates x = r cos φ and y = r sin φ, so

f(x, y) = xy = r cos φ r sin φ = r2 cos φ sin φ . (17)

Thus, the integral of f over the region is

∫ 2

1
r dr

∫ 1
2
π

0
dφ r2 cos φ sin φ =
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r3 dr
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2
π

0
cos φ sin φ dφ . (18)

These two integrals can be evaluated independently:
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2
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and ∫ 2
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r3 dr =
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4
. (20)

Therefore, ∫ 2

1
r dr
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2
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0
dφr2 cos φ sin φ =
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8
. (21)

Notice that, if the range φ is extended to π, the integral of f over the resulting region
vanishes, again because of symmetry, as discussed in Part 2(b).
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4. To determine the ranges of r and φ within the petal that lies in the first quadrant in
the graph r = 2 sin(3φ), shown below,
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we first observe that r(0) = 0 and that r returns to the origin first for φ = 1
3
π. Thus,

the range of φ for the area within the first petal is

0 ≤ φ ≤ 1
3
π . (22)

The corresponding range of r is obtained by noting that the lower bound is r = 0 and
the upper bound is the curve of the graph, i.e. r = 2 sin(3φ). Thus, the range of r is

0 ≤ r ≤ 2 sin(3φ) , (23)

and the area A of the petal can be represented as a double integral in polar coordinates:

A =
∫ 1

3
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0
dφ

∫ 2 sin(3φ)

0
r dr . (24)

This integral is evaluated as follows:
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∫ 1

3
π

0
dφ
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If we change the integration variable to t = 3φ, then

sin2(3φ) dφ = 1
3
sin2 t dt , (26)

and
φ = 0 −→ t = 0 , φ = 1

3
π −→ t = π , (27)

so that the area integral is transformed to
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