First-Year Mathematics

Solutions to Problem Set 3

1. The region in the $x-y$ plane bounded by the line $y=1$ and the parabola $y=x^{2}$ is shown shaded in the figure below:

(a) The area of this region is calculated in rectangular coordinates. By taking the range of x as

$$
\begin{equation*}
-1 \leq x \leq 1 \tag{1}
\end{equation*}
$$

the corresponding range of y is bounded from below by the parabola $y=x^{2}$ and from above by the line $y=1$:

$$
\begin{equation*}
x^{2} \leq y \leq 1 \tag{2}
\end{equation*}
$$

The area is thereby represented by the following double integral:

$$
\begin{align*}
A=\int_{-1}^{1} d x \int_{x^{2}}^{1} d y & =\int_{-1}^{1} d x\left(\left.y\right|_{x^{2}} ^{1}\right) \\
& =\int_{-1}^{1} d x-\int_{-1}^{1} x^{2} d x \\
& =\left(\left.x\right|_{-1} ^{1}\right)-\left(\left.\frac{x^{3}}{3}\right|_{-1} ^{1}\right) \\
& =2-\frac{2}{3}=\frac{4}{3} \tag{3}
\end{align*}
$$

(b) The integral of $f(x, y)=x^{2}$ over this region is given by

$$
\begin{aligned}
\int_{-1}^{1} x^{2} d x \int_{x^{2}}^{1} d y & =\int_{-1}^{1} x^{2} d x\left(\left.y\right|_{x^{2}} ^{1}\right) \\
& =\int_{-1}^{1} x^{2}\left(1-x^{2}\right) d x
\end{aligned}
$$

$$
\begin{align*}
& =\left(\left.\frac{x^{3}}{3}\right|_{-1} ^{1}\right)-\left(\left.\frac{x^{5}}{5}\right|_{-1} ^{1}\right) \\
& =\frac{2}{3}-\frac{2}{5}=\frac{4}{15} . \tag{4}
\end{align*}
$$

2. The integration region is bounded by the line $y=\frac{1}{2}$ and the unit semicircle $x^{2}+y^{2}=1$, as shown in the figure below:

(a) The area of this region is calculated in rectangular coordinates. The calculation is simpler if the integral over x is carried out before the integral over y. The range of y is then given by

$$
\begin{equation*}
\frac{1}{2} \leq y \leq 1 \tag{5}
\end{equation*}
$$

and the corresponding range of x is bounded from the left and right by the boundary of the unit circle:

$$
\begin{equation*}
-\sqrt{1-y^{2}} \leq x \leq \sqrt{1-y^{2}} . \tag{6}
\end{equation*}
$$

The area is now represented by the double integral

$$
\begin{align*}
A & =\int_{\frac{1}{2}}^{1} d y \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} d x \\
& =\int_{\frac{1}{2}}^{1} d y\left(\left.x\right|_{-\sqrt{1-y^{2}}} ^{\sqrt{1-y^{2}}}\right) \\
& =2 \int_{\frac{1}{2}}^{1} \sqrt{1-y^{2}} d y \tag{7}
\end{align*}
$$

This integral is evaluated by trigonometric substitution. Accordingly, we change variables to $y=\sin t$. Then,

$$
\begin{equation*}
\sqrt{1-y^{2}} d y=\sqrt{1-\sin ^{2} t} \cos t d t=\cos ^{2} t d t \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
y=\frac{1}{2} \longrightarrow t=\frac{1}{6} \pi, \quad y=1 \longrightarrow t=\frac{1}{2} \pi . \tag{9}
\end{equation*}
$$

Thus, the integral becomes

$$
\begin{align*}
A & =2 \int_{\frac{1}{2}}^{1} \sqrt{1-y^{2}} d y=2 \int_{\frac{1}{6} \pi}^{\frac{1}{2} \pi} \cos ^{2} t d t \\
& =\left(\frac{1}{2} \pi-\frac{1}{6} \pi\right)+\left[\sin \left(\frac{1}{2} \pi\right) \cos \left(\frac{1}{2} \pi\right)-\sin \left(\frac{1}{6} \pi\right) \cos \left(\frac{1}{6} \pi\right)\right] \\
& =\frac{1}{3} \pi-\frac{1}{4} \sqrt{3} \tag{10}
\end{align*}
$$

where we have used the result in Part 6 of Classwork 1.
(b) The integral of $f(x, y)=x+y$ over this region is written as the sum of two integrals:

$$
\begin{align*}
\int_{\frac{1}{2}}^{1} d y \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} d x(x+y) & =\int_{\frac{1}{2}}^{1} d y \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} x d x+\int_{\frac{1}{2}}^{1} y d y \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} d x \\
& =\int_{\frac{1}{2}}^{1} d y \underbrace{\left(\left.\frac{x^{2}}{2}\right|_{-\sqrt{1-y^{2}}} ^{\sqrt{1-y^{2}}}\right)}_{0}+2 \int_{\frac{1}{2}}^{1} y \sqrt{1-y^{2}} d y \\
& =2 \int_{\frac{1}{2}}^{1} y \sqrt{1-y^{2}} d y \tag{11}
\end{align*}
$$

Note that the first integral vanishes because the region is symmetric about the y-axis and x is an odd function. To evaluate the remaining integral we need to determine the anti-derivative of the integrand. This is accomplished by observing that, since

$$
\begin{equation*}
\frac{d}{d y}\left(1-y^{2}\right)^{3 / 2}=\frac{3}{2}\left(1-y^{2}\right)^{1 / 2}(-2 y)=-3 y\left(1-y^{2}\right)^{1 / 2} \tag{12}
\end{equation*}
$$

the anti-derivative of $2 \sqrt{1-y^{2}}$ is $-\frac{2}{3}\left(1-y^{2}\right)^{3 / 2}$, i.e.

$$
\begin{equation*}
\frac{d}{d y}\left[-\frac{2}{3}\left(1-y^{2}\right)^{3 / 2}\right]=2 \sqrt{1-y^{2}} \tag{13}
\end{equation*}
$$

Hence, the integral of f over the region is

$$
\begin{equation*}
2 \int_{\frac{1}{2}}^{1} y \sqrt{1-y^{2}} d y=-\left.\frac{2}{3}\left(1-y^{2}\right)^{3 / 2}\right|_{\frac{1}{2}} ^{1}=\frac{2}{3}\left(\frac{3}{4}\right)^{3 / 2} \tag{14}
\end{equation*}
$$

3. To evaluate the function $f(x, y)=x y$ over the shaded region shown below,

we use polar coordinates. The range of r within this region is bounded by the circles with radii 1 and 2 , so

$$
\begin{equation*}
1 \leq r \leq 2 \tag{15}
\end{equation*}
$$

The range of ϕ is between the x-axis $(\phi=0)$ and the y-axis $\left(y=\frac{1}{2} \pi\right)$:

$$
\begin{equation*}
0 \leq \phi \leq \frac{1}{2} \pi \tag{16}
\end{equation*}
$$

In polar coordinates $x=r \cos \phi$ and $y=r \sin \phi$, so

$$
\begin{equation*}
f(x, y)=x y=r \cos \phi r \sin \phi=r^{2} \cos \phi \sin \phi . \tag{17}
\end{equation*}
$$

Thus, the integral of f over the region is

$$
\begin{equation*}
\int_{1}^{2} r d r \int_{0}^{\frac{1}{2} \pi} d \phi r^{2} \cos \phi \sin \phi=\int_{1}^{2} r^{3} d r \int_{0}^{\frac{1}{2} \pi} \cos \phi \sin \phi d \phi \tag{18}
\end{equation*}
$$

These two integrals can be evaluated independently:

$$
\begin{equation*}
\int_{0}^{\frac{1}{2} \pi} \cos \phi \sin \phi d \phi=\left.\frac{1}{2} \sin ^{2} \phi\right|_{0} ^{\frac{1}{2} \pi}=\frac{1}{2} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{1}^{2} r^{3} d r=\left.\frac{r^{4}}{4}\right|_{1} ^{2}=4-\frac{1}{4}=\frac{15}{4} . \tag{20}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\int_{1}^{2} r d r \int_{0}^{\frac{1}{2} \pi} d \phi r^{2} \cos \phi \sin \phi=\frac{15}{4} \times \frac{1}{2}=\frac{15}{8} . \tag{21}
\end{equation*}
$$

Notice that, if the range ϕ is extended to π, the integral of f over the resulting region vanishes, again because of symmetry, as discussed in Part 2(b).
4. To determine the ranges of r and ϕ within the petal that lies in the first quadrant in the graph $r=2 \sin (3 \phi)$, shown below,

we first observe that $r(0)=0$ and that r returns to the origin first for $\phi=\frac{1}{3} \pi$. Thus, the range of ϕ for the area within the first petal is

$$
\begin{equation*}
0 \leq \phi \leq \frac{1}{3} \pi . \tag{22}
\end{equation*}
$$

The corresponding range of r is obtained by noting that the lower bound is $r=0$ and the upper bound is the curve of the graph, i.e. $r=2 \sin (3 \phi)$. Thus, the range of r is

$$
\begin{equation*}
0 \leq r \leq 2 \sin (3 \phi) \tag{23}
\end{equation*}
$$

and the area A of the petal can be represented as a double integral in polar coordinates:

$$
\begin{equation*}
A=\int_{0}^{\frac{1}{3} \pi} d \phi \int_{0}^{2 \sin (3 \phi)} r d r . \tag{24}
\end{equation*}
$$

This integral is evaluated as follows:

$$
\begin{align*}
A & =\int_{0}^{\frac{1}{3} \pi} d \phi \int_{0}^{2 \sin (3 \phi)} r d r=\int_{0}^{\frac{1}{3} \pi} \sin (3 \phi) d \phi\left(\left.\frac{r^{2}}{2}\right|_{0} ^{2 \sin (3 \phi)}\right) \\
& =4 \int_{0}^{\frac{1}{3} \pi} \sin ^{2}(3 \phi) d \phi \tag{25}
\end{align*}
$$

If we change the integration variable to $t=3 \phi$, then

$$
\begin{equation*}
\sin ^{2}(3 \phi) d \phi=\frac{1}{3} \sin ^{2} t d t \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi=0 \longrightarrow t=0, \quad \phi=\frac{1}{3} \pi \longrightarrow t=\pi, \tag{27}
\end{equation*}
$$

so that the area integral is transformed to

$$
\begin{equation*}
A=4 \int_{0}^{\frac{1}{3} \pi} \sin ^{2}(3 \phi) d \phi=\frac{4}{3} \int_{0}^{\pi} \sin ^{2} t d t=\frac{2 \pi}{3} . \tag{28}
\end{equation*}
$$

