
First-Year Mathematics

Solutions to Problem Set 2 January 14, 2005

1. The region over which the integral is taken is shown below:
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(a) If we allow x to vary between 0 and 2, then the range of y is restricted by the
curves that bound the region. In the interval 0 ≤ x ≤ 1, y is bounded from below
by the x-axis and from above by the curve y = x, so the range of y is

0 ≤ y ≤ x . (1)

In the interval 1 ≤ x ≤ 2, y is bounded from below by the x-axis and from above
by the curve y = 2 − x, so the range of y is

0 ≤ y ≤ 2 − x . (2)

The integral to be evaluated is thereby∫∫
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(b) If we allow y to vary between 0 and 1, the range of x is bounded on the left by
the straight line y = x and on the right by the straight line y = 2 − x. Thus, the
range of x is

y ≤ x ≤ 2 − y . (4)

The integral to be evaluated is∫∫
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2. The region A is the interior of the curve x2 + y2 = R2. Thus, for a given value of x,

−
√

R2 − x2 ≤ y ≤
√

R2 − x2 , (6)

and, for a given value of y,

−
√

R2 − y2 ≤ x ≤
√

R2 − y2 . (7)

Thus, the interior of this circular region can be represented by either of the following
integrals: ∫ R
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Evaluating the first of these, we have
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This is a standard example of an integral whose evaluation proceeds by trigonometric
substitution. With x = R sin φ, we have

√
R2 − x2 =

√
R2 − R2 sin2 φ = R

√
1 − sin2 φ = R cos φ , (10)

and
dx = R cos φ dφ . (11)
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Then, with x = −R corresponding to φ = −1
2
π and x = R to φ = 1

2
π, our integral is

transformed to

2R2
∫ 1

2
π

− 1
2
π
cos2 φ dφ︸ ︷︷ ︸
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π

= πR2 . (12)

3. To evaluate the integral in Part 2 in circular polar coordinates, we first determine the
ranges of the integration variables. For the interior of a circle of radius R, we have
that

0 ≤ r ≤ R , 0 ≤ φ < 2π . (13)

The integral to be evaluated is, therefore,
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which is the area of the circle.

4. To determine the area between two circles of radii a and b, where b > a, in circular
polar coordinates, we refer to figure (a) below:
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The region to be integrated, which is shaded, corresponds to the following ranges of r
and φ:

a ≤ r ≤ b , 0 ≤ φ < 2π . (15)
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The corresponding integral is∫ b
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which can be interpreted as the area of the larger circle, πb2, minus the area of the
smaller circle, πa2.

The area of the shaded region in figure (b) above is similarly calculated. The ranges
of r and φ are

a ≤ r ≤ b , 0 ≤ φ ≤ 1
2
π , (17)

and the integral is ∫ b
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r dr
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5. (a) The Cartesian representation of the vector r that points from the origin to the
point (x, y) are r = x i + y j. In polar coordinates, the CArtesian components of
this vector are

x = r cos φ , y = r sin φ , (19)

and this vector is expressed as

r = r cos φ i + r sin φ j . (20)

The lines of constant r = |r| = (x2 + y2)1/2 are circles of radius r centered at the
origin.

(b) The tangent to the circles of constant r are determined by taking the derivative
of r with respect to φ. As discussed in Sec. 1.1, this requires differentiating each
of the components of r:

t =
∂r

∂φ
= −r sin φ i + r cos φ j . (21)

Notice that, in Cartesian coordinates (x, y), this vector can be written as

t = −y i + x j . (22)

(c) The “dot” product r · t is

r · t = (r cos φ i + r sin φ j) · (−r sin φ i + r cos φ j)

= −r2 sin φ cos φ + r2 sin φ cos φ

= 0 , (23)
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or, in terms of Cartesian coordinates,

(x i + y j) · (−y i + x j) = −xy + xy = 0 , (24)

which demonstrates the orthogonality of circular polar coordinates. This can be
seen directly from the coordinate curves in the circular polar cooordinate system,
as shown below (Fig. 2.8(b) from the course notes):

6. Beginning with

I =
∫ ∞

−∞
e−x2

dx , (25)

we write the square of this integral as

I2 =
(∫ ∞

−∞
e−x2

dx
)2

=
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dx
∫ ∞
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∫ ∞
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dx
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−∞
dye−(x2+y2) . (26)

We must use different integration variables for the two integrations in I2 because the
integration variables range between −∞ and ∞ independently. Thus, since these two
integrations are combined into a single double integral, we must, for book-keeping
purposes, use two different variables. Now, viewed as a double integral, the region of
integration is the entire x-y plane. This integral will be evaluated by first transforming
to circular polar coordinates,

x = r cos φ , y = r sin φ , (27)

with
0 ≤ r < ∞ , 0 ≤ φ < 2π , (28)

in which case the integral becomes

I2 =
∫ r

0
r e−r2

dr
∫ 2π

0
dφ︸ ︷︷ ︸

2π

= 2π
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dr . (29)
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The radial integral is carried out as follows∫ r

0
r e−r2
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2
. (30)

Thus, I2 = π or, ∫ ∞

−∞
e−x2

dx =
√

π . (31)
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