First-Year Mathematics

1. Evaluate the double integral

$$
\iint_{A} x y d x d y
$$

where the region A is the triangle with vertices at $(0,0),(1,1)$, and $(2,0)$, in the two ways outlined below:
(a) Allow x to vary between 0 and 2 and consider the corresponding allowed values of y. The intervals $0 \leq x \leq 1$ and $1 \leq x \leq 2$ must be done separately. Hence, obtain the two integrals:

$$
\iint_{A} x y d x d y=\int_{0}^{1} x d x \int_{0}^{x} y d y+\int_{1}^{2} x d x \int_{0}^{2-x} y d y
$$

(b) Now allow y to vary between 0 and 1 and consider the corresponding allowed values of x. This results in a single integral:

$$
\iint_{A} x y d x d y=\int_{0}^{1} y d y \int_{y}^{2-y} x d x .
$$

Ans: $\frac{1}{3}$.
2. Evaluate the double integral

$$
\iint_{A} d x d y
$$

where A is the interior of a circle of radius R in rectangular coordinates The final step in the calculation requires evaluating the integral

$$
2 \int_{-R}^{R} \sqrt{R^{2}-s^{2}} d s
$$

where s is either x or y (depending on whether the y or x integration is carried out first). Use the trigonometric substitution $s=R \sin \phi$ to transform this integral to

$$
2 R^{2} \int_{-\pi / 2}^{\pi / 2} \cos ^{2} \phi d \phi
$$

and obtain

$$
\iint_{A} d x d y=\pi R^{2}
$$

3. Evaulate the integral in Part 2 by using circular polar coordinates.
4. Suppose there are two circles of radius a and b, with $b>a$, both of which are centered at the origin. Use integration with polar coordinates to determine (a) the area between these circles, and (b) the area bounded by these circles between $\phi=0$ and $\phi=\frac{1}{2} \pi$.

Ans: (a) $\pi\left(b^{2}-a^{2}\right)$, (b) $\frac{1}{4} \pi\left(b^{2}-a^{2}\right)$.
5. One of the most important properties of polar coordinates (r, ϕ) is orthogonality, i.e. the property that lines of constant r intersect lines of constant ϕ at right angles. For this reason, polar coordinates are referred to as orthogonal coordinates. To demonstrate this property, consider any point (r, ϕ). Then,
(a) Determine the Cartesian components of the radial vector \boldsymbol{r} that lies along the line from the origin to (r, ϕ) and points in the direction of increasing r.
(b) Determine the vector \boldsymbol{t} tangent to the circle at (r, ϕ). (Think of a particle moving along a circular path with ϕ as the "time". The vector \boldsymbol{t} is the "velocity" of this particle.)
(c) Calculate the "dot" product $\boldsymbol{r} \cdot \boldsymbol{t}$.

Ans: (a) $\boldsymbol{r}=r \cos \phi \boldsymbol{i}+r \sin \phi \boldsymbol{j}$, (b) $\boldsymbol{t}=-r \sin \phi \boldsymbol{i}+r \cos \phi \boldsymbol{j}$, (c) $\boldsymbol{r} \cdot \boldsymbol{t}=0$.
6. A novel use of polar coordinates is for the evaluation of the following integral:

$$
I=\int_{-\infty}^{\infty} e^{-x^{2}} d x
$$

This integral is encountered in quantum mechanics, statistical mechanics, and probability theory. Proceed by squaring this integral and writing the product as

$$
I^{2}=\int_{-\infty}^{\infty} d x \int_{-\infty}^{\infty} d y \mathrm{e}^{-x^{2}-y^{2}}
$$

Notice that we have introduced a second integration variable (why?). Transform this integral into polar coordinates and evaluate the resulting integrals over r and ϕ to deduce that

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}
$$

