First-Year Mathematics
Solutions to Problem Set 1 January 7, 2005

1. The definition of the derivative of a function f(z) is
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(a) f=2® From the definition in Eq. (1), we have
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where “ -.” signifies terms that are of higher order in Az, which vanish in the
limit Az — 0.

(b) f = x'/2. From the definition in Eq. (1), we have
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Applying the binomial series to the term (x + Ax)/? and retaining terms only to
first order in Ax yields
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By substituting this expression into Eq. (3), we obtain
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(¢c) f=2"Y2. From the definition in Eq. (1), we have
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Applying the binomial series to the term (z + Ax) and retaining terms only

to first order in Ax yields
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By substituting this expression into Eq. (6), we obtain
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. The derivative of a composite function f(g(x)), where f and g are differentiable func-
tions, is defined as
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This expression can be written as
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By defining Ag = g(z + Az) — g(z), so g(x + A) = g(z) + Ag, we can write
df(9) _ 1o { lf(g(x) +Ag) — f(g(x))l [g(f5 +Ax) — g(ﬂ?)] } ‘

dl‘ o Ax—0

= Ag Ax (11)

Since g is a continuous function (because it is differentiable), Ag — 0 as Az — 0.

Thus, since
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we arrive at the chain rule:
dx dgdv
3. (a) f(z,y) =+x%+ y> The two first partial derivatives of f are calculated as
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(b) f(z,y,2) = (x®+y*+22)"Y/2. The three first partial derivatives of f are calculated
as
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(¢) f(z,y) = In(xy). The two first partial derivatives of f are calculated as
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(d) f = e®/¥. The two first partial derivatives of f are calculated as

o z/y

_:erff/yxlz6 ’

ox Y Yy

0 gy T\ xe®ly

a——e X —— | = 7 -
Yy Yy Yy

4. From the definition of the derivative in Eq. (1),

dsine) [sin(x—i—Ax) —sinm] |
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By using the identity for the sine of the sum of two angles, we have

sin(z + Ax) = sinz cos(Az) + cosxsin(Az) = sinz + Az cosx + - - - .

Substitution of this expression into Eq. (24) yields
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Similarly,
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By using the identity for the cosine of the sum of two angles, we have

cos(z + Ax) = cosz cos(Ax) — sinxsin(Az) = cosz — Azsinx + - - - .

Substitution of this expression into Eq. (27) yields

d(cosx) , (cosz — Azsinz) — cosx
= lim
dx Az—0 Az
= —sinz.

5. The Fundamental Theorem of Calculus states that
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where dF'/dx = f. Similarly, by reversing the limits of integration, we have

By comparing the right-hand sides of Eqgs. (30) and (31), we conclude that

/baf(x)dx:—/abf(x)dx.

. The Fundamental Theorem of Calculus states that

where dF'/dx = f. By differentiating both sides with respect to z, we obtain,
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Similarly, by writing the Fundamental Theorem of Calculus as

b
[ 1(s)ds = F(b) - F(a),
and differentiating with respect to x, we obtain
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Finally, by writing the Fundamental Theorem of Calculus as

and differentiating with respect to x using the chain rule, we obtain
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. The Fundamental Theorem of Calculus states that
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From Part 6 of Classwork 1, we set b = x, so that we can write,

xT
/ cos? sds =
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= %x—i— %sinxcos—i—C’,
so that the primitive function F' of cos? z is

F(z) =3z + isinzcos+C.

To verify this result by direct differentiation, we have
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= Lcos®z + (1 — cos’z)

= COS2 X .



