First-Year Mathematics

Solutions to Problem Set 1

1. The definition of the derivative of a function $f(x)$ is

$$
\begin{equation*}
\frac{d f}{d x}=\lim _{\Delta x \rightarrow 0}\left[\frac{f(x+\Delta x)-f(x)}{\Delta x}\right] \tag{1}
\end{equation*}
$$

(a) $f=x^{3}$. From the definition in Eq. (1), we have

$$
\begin{align*}
\frac{d\left(x^{3}\right)}{d x} & =\lim _{\Delta \rightarrow 0}\left[\frac{(x+\Delta x)^{3}-x^{3}}{\Delta x}\right] \\
& =\lim _{\Delta x \rightarrow 0}\left[\frac{\left(x^{3}+3 x^{2} \Delta x+\cdots\right)-x^{3}}{\Delta x}\right] \\
& =\lim _{\Delta x \rightarrow 0}\left[\frac{3 x^{2} \Delta x+\cdots}{\Delta x}\right] \\
& =3 x^{2} \tag{2}
\end{align*}
$$

where ". ." signifies terms that are of higher order in Δx, which vanish in the limit $\Delta x \rightarrow 0$.
(b) $f=x^{1 / 2}$. From the definition in Eq. (1), we have

$$
\begin{equation*}
\frac{d\left(x^{1 / 2}\right)}{d x}=\lim _{\Delta x \rightarrow 0}\left[\frac{(x+\Delta x)^{1 / 2}-x^{1 / 2}}{\Delta x}\right] \tag{3}
\end{equation*}
$$

Applying the binomial series to the term $(x+\Delta x)^{1 / 2}$ and retaining terms only to first order in Δx yields

$$
\begin{align*}
(x+\Delta x)^{1 / 2} & =x^{1 / 2}\left(1+\frac{\Delta x}{x}\right)^{1 / 2} \\
& =x^{1 / 2}\left(1+\frac{\Delta x}{2 x}+\cdots\right) \\
& =x^{1 / 2}+\frac{1}{2} x^{-1 / 2} \Delta x \cdots \tag{4}
\end{align*}
$$

By substituting this expression into Eq. (3), we obtain

$$
\begin{align*}
\frac{d\left(x^{1 / 2}\right)}{d x} & =\lim _{\Delta x \rightarrow 0}\left[\frac{\left(x^{1 / 2}+\frac{1}{2} x^{-1 / 2} \Delta x\right)+\cdots-x^{1 / 2}}{\Delta x}\right] \\
& =\lim _{\Delta x \rightarrow 0}\left[\frac{\frac{1}{2} x^{-1 / 2} \Delta x+\cdots}{\Delta x}\right] \\
& =\frac{1}{2} x^{-1 / 2} \tag{5}
\end{align*}
$$

(c) $f=x^{-1 / 2}$. From the definition in Eq. (1), we have

$$
\begin{equation*}
\frac{d\left(x^{-1 / 2}\right)}{d x}=\lim _{\Delta x \rightarrow 0}\left[\frac{(x+\Delta x)^{-1 / 2}-x^{-1 / 2}}{\Delta x}\right] \tag{6}
\end{equation*}
$$

Applying the binomial series to the term $(x+\Delta x)^{-1 / 2}$ and retaining terms only to first order in Δx yields

$$
\begin{align*}
(x+\Delta x)^{-1 / 2} & =x^{-1 / 2}\left(1+\frac{\Delta x}{x}\right)^{-1 / 2} \\
& =x^{-1 / 2}\left(1-\frac{\Delta x}{2 x}+\cdots\right) \\
& =x^{-1 / 2}-\frac{1}{2} x^{-3 / 2} \Delta x \cdots \tag{7}
\end{align*}
$$

By substituting this expression into Eq. (6), we obtain

$$
\begin{align*}
\frac{d\left(x^{-1 / 2}\right)}{d x} & =\lim _{\Delta x \rightarrow 0}\left[\frac{\left(x^{-1 / 2}-\frac{1}{2} x^{-3 / 2} \Delta x\right)+\cdots-x^{-1 / 2}}{\Delta x}\right] \\
& =\lim _{\Delta x \rightarrow 0}\left[\frac{-\frac{1}{2} x^{-3 / 2} \Delta x+\cdots}{\Delta x}\right] \\
& =-\frac{1}{2} x^{-3 / 2} . \tag{8}
\end{align*}
$$

2. The derivative of a composite function $f(g(x))$, where f and g are differentiable functions, is defined as

$$
\begin{equation*}
\frac{d f(g)}{d x} \equiv \lim _{\Delta x \rightarrow 0}\left[\frac{f(g(x+\Delta x))-f(g(x))}{\Delta x}\right] . \tag{9}
\end{equation*}
$$

This expression can be written as

$$
\begin{equation*}
\frac{d f(g)}{d x} \equiv \lim _{\Delta x \rightarrow 0}\left\{\left[\frac{f(g(x+\Delta x))-f(g(x))}{g(x+\Delta x)-g(x)}\right]\left[\frac{g(x+\Delta x)-g(x)}{\Delta x}\right]\right\} \tag{10}
\end{equation*}
$$

By defining $\Delta g=g(x+\Delta x)-g(x)$, so $g(x+\Delta)=g(x)+\Delta g$, we can write

$$
\begin{equation*}
\frac{d f(g)}{d x} \equiv \lim _{\Delta x \rightarrow 0}\left\{\left[\frac{f(g(x)+\Delta g)-f(g(x))}{\Delta g}\right]\left[\frac{g(x+\Delta x)-g(x)}{\Delta x}\right]\right\} \tag{11}
\end{equation*}
$$

Since g is a continuous function (because it is differentiable), $\Delta g \rightarrow 0$ as $\Delta x \rightarrow 0$. Thus, since

$$
\begin{equation*}
\frac{d f}{d g} \equiv \lim _{\Delta g \rightarrow 0}\left[\frac{f(g(x)+\Delta g)-f(g(x))}{\Delta g}\right] \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d g}{d x} \equiv \lim _{\Delta x \rightarrow 0}\left[\frac{g(x+\Delta x)-g(x)}{\Delta x}\right], \tag{13}
\end{equation*}
$$

we arrive at the chain rule:

$$
\begin{equation*}
\frac{d f(g)}{d x}=\frac{d f}{d g} \frac{d g}{d x} . \tag{14}
\end{equation*}
$$

3. (a) $f(x, y)=\sqrt{x^{2}+y^{2}}$. The two first partial derivatives of f are calculated as

$$
\begin{align*}
& \frac{\partial}{\partial x}\left(x^{2}+y^{2}\right)^{1 / 2}=\frac{1}{2}\left(x^{2}+y^{2}\right)^{-1 / 2} \times 2 x=x\left(x^{2}+y^{2}\right)^{-1 / 2} \tag{15}\\
& \frac{\partial}{\partial y}\left(x^{2}+y^{2}\right)^{1 / 2}=\frac{1}{2}\left(x^{2}+y^{2}\right)^{-1 / 2} \times 2 y=y\left(x^{2}+y^{2}\right)^{-1 / 2} \tag{16}
\end{align*}
$$

(b) $f(x, y, z)=\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2}$. The three first partial derivatives of f are calculated as

$$
\begin{align*}
& \frac{\partial}{\partial x}\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2}=-\frac{1}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2} \times 2 x=-x\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}, \tag{17}\\
& \frac{\partial}{\partial y}\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2}=-\frac{1}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2} \times 2 y=-y\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}, \tag{18}\\
& \frac{\partial}{\partial z}\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2}=-\frac{1}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2} \times 2 z=-z\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2} . \tag{19}
\end{align*}
$$

(c) $f(x, y)=\ln (x y)$. The two first partial derivatives of f are calculated as

$$
\begin{gather*}
\frac{\partial}{\partial x} \ln (x y)=\frac{1}{x y} \times y=\frac{1}{x}, \tag{20}\\
\frac{\partial}{\partial y} \ln (x y)=\frac{1}{x y} \times x=\frac{1}{y} . \tag{21}
\end{gather*}
$$

(d) $f=e^{x / y}$. The two first partial derivatives of f are calculated as

$$
\begin{align*}
& \frac{\partial}{\partial x}=e^{x / y} \times \frac{1}{y}=\frac{e^{x / y}}{y} \tag{22}\\
& \frac{\partial}{\partial y}=e^{x / y} \times\left(-\frac{x}{y^{2}}\right)=-\frac{x e^{x / y}}{y^{2}} \tag{23}
\end{align*}
$$

4. From the definition of the derivative in Eq. (1),

$$
\begin{equation*}
\frac{d(\sin x)}{d x}=\lim _{\Delta x \rightarrow 0}\left[\frac{\sin (x+\Delta x)-\sin x}{\Delta x}\right] \tag{24}
\end{equation*}
$$

By using the identity for the sine of the sum of two angles, we have

$$
\begin{equation*}
\sin (x+\Delta x)=\sin x \cos (\Delta x)+\cos x \sin (\Delta x)=\sin x+\Delta x \cos x+\cdots \tag{25}
\end{equation*}
$$

Substitution of this expression into Eq. (24) yields

$$
\begin{align*}
\frac{d(\sin x)}{d x} & =\lim _{\Delta x \rightarrow 0}\left[\frac{(\sin x+\Delta x \cos x)-\sin x}{\Delta x}\right] \\
& =\cos x \tag{26}
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\frac{d(\cos x)}{d x}=\lim _{\Delta x \rightarrow 0}\left[\frac{\cos (x+\Delta x)-\cos x}{\Delta x}\right] \tag{27}
\end{equation*}
$$

By using the identity for the cosine of the sum of two angles, we have

$$
\begin{equation*}
\cos (x+\Delta x)=\cos x \cos (\Delta x)-\sin x \sin (\Delta x)=\cos x-\Delta x \sin x+\cdots \tag{28}
\end{equation*}
$$

Substitution of this expression into Eq. (27) yields

$$
\begin{align*}
\frac{d(\cos x)}{d x} & =\lim _{\Delta x \rightarrow 0}\left[\frac{(\cos x-\Delta x \sin x)-\cos x}{\Delta x}\right] \\
& =-\sin x \tag{29}
\end{align*}
$$

5. The Fundamental Theorem of Calculus states that

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=F(b)-F(a), \tag{30}
\end{equation*}
$$

where $d F / d x=f$. Similarly, by reversing the limits of integration, we have

$$
\begin{equation*}
\int_{b}^{a} f(x) d x=F(a)-F(b) . \tag{31}
\end{equation*}
$$

By comparing the right-hand sides of Eqs. (30) and (31), we conclude that

$$
\begin{equation*}
\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x \tag{32}
\end{equation*}
$$

6. The Fundamental Theorem of Calculus states that

$$
\begin{equation*}
\int_{a}^{x} f(s) d s=F(x)-F(a), \tag{33}
\end{equation*}
$$

where $d F / d x=f$. By differentiating both sides with respect to x, we obtain,

$$
\begin{equation*}
\frac{d}{d x}\left[\int_{a}^{x} f(s) d s\right]=\frac{d F}{d x}=f(x) . \tag{34}
\end{equation*}
$$

Similarly, by writing the Fundamental Theorem of Calculus as

$$
\begin{equation*}
\int_{x}^{b} f(s) d s=F(b)-F(x), \tag{35}
\end{equation*}
$$

and differentiating with respect to x, we obtain

$$
\begin{equation*}
\frac{d}{d x}\left[\int_{x}^{b} f(s) d s\right]=-\frac{d F}{d x}=-f(x) \tag{36}
\end{equation*}
$$

Finally, by writing the Fundamental Theorem of Calculus as

$$
\begin{equation*}
\int_{u(x)}^{v(x)} f(s) d x=F[v(x)]-F[u(x)], \tag{37}
\end{equation*}
$$

and differentiating with respect to x using the chain rule, we obtain

$$
\begin{equation*}
\frac{d}{d x}\left[\int_{u(x)}^{v(x)} f(s) d x\right]=\frac{d F}{d v} \frac{d v}{d x}-\frac{d F}{d u} \frac{d u}{d x}=f[v(x)] \frac{d v}{d x}-f[u(x)] \frac{d u}{d x} . \tag{38}
\end{equation*}
$$

7. The Fundamental Theorem of Calculus states that

$$
\begin{equation*}
\int_{a}^{x} f(s) d s=F(x)-F(a), \tag{39}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{d F}{d x}=f \tag{40}
\end{equation*}
$$

From Part 6 of Classwork 1, we set $b=x$, so that we can write,

$$
\begin{align*}
\int_{a}^{x} \cos ^{2} s d s & =\frac{1}{2}(x-a)+\frac{1}{2}(\sin x \cos x-\sin a \cos a) \\
& =\frac{1}{2} x+\frac{1}{2} \sin x \cos x \underbrace{-\frac{1}{2} a-\frac{1}{2} \sin a \cos a}_{\equiv C} \\
& =\frac{1}{2} x+\frac{1}{2} \sin x \cos +C, \tag{41}
\end{align*}
$$

so that the primitive function F of $\cos ^{2} x$ is

$$
\begin{equation*}
F(x)=\frac{1}{2} x+\frac{1}{2} \sin x \cos +C . \tag{42}
\end{equation*}
$$

To verify this result by direct differentiation, we have

$$
\begin{align*}
\frac{d F}{d x} & =\frac{1}{2}+\frac{1}{2} \cos ^{2} x-\frac{1}{2} \sin ^{2} x \\
& =\frac{1}{2} \cos ^{2} x+\frac{1}{2}\left(1-\cos ^{2} x\right) \\
& =\cos ^{2} x . \tag{43}
\end{align*}
$$

