
First-Year Mathematics

Solutions to Problem Set 1 January 7, 2005

1. The definition of the derivative of a function f(x) is

df

dx
= lim

∆x→0

[
f(x + ∆x) − f(x)

∆x

]
. (1)

(a) f = x3. From the definition in Eq. (1), we have

d(x3)

dx
= lim

∆→0

[
(x + ∆x)3 − x3

∆x

]

= lim
∆x→0

[
(x3 + 3x2∆x + · · ·) − x3

∆x

]

= lim
∆x→0

[
3x2∆x + · · ·

∆x

]

= 3x2 , (2)

where “· · ·” signifies terms that are of higher order in ∆x, which vanish in the
limit ∆x → 0.

(b) f = x1/2. From the definition in Eq. (1), we have

d(x1/2)

dx
= lim

∆x→0

[
(x + ∆x)1/2 − x1/2

∆x

]
. (3)

Applying the binomial series to the term (x + ∆x)1/2 and retaining terms only to
first order in ∆x yields

(x + ∆x)1/2 = x1/2
(
1 +

∆x

x

)1/2

= x1/2
(
1 +

∆x

2x
+ · · ·

)

= x1/2 + 1
2
x−1/2∆x · · · . (4)
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By substituting this expression into Eq. (3), we obtain

d(x1/2)

dx
= lim

∆x→0

[
(x1/2 + 1

2
x−1/2∆x) + · · · − x1/2

∆x

]

= lim
∆x→0

[
1
2
x−1/2∆x + · · ·

∆x

]

= 1
2
x−1/2 . (5)

(c) f = x−1/2. From the definition in Eq. (1), we have

d(x−1/2)

dx
= lim

∆x→0

[
(x + ∆x)−1/2 − x−1/2

∆x

]
. (6)

Applying the binomial series to the term (x + ∆x)−1/2 and retaining terms only
to first order in ∆x yields

(x + ∆x)−1/2 = x−1/2
(
1 +

∆x

x

)−1/2

= x−1/2
(
1 − ∆x

2x
+ · · ·

)

= x−1/2 − 1
2
x−3/2∆x · · · . (7)

By substituting this expression into Eq. (6), we obtain

d(x−1/2)

dx
= lim

∆x→0

[
(x−1/2 − 1

2
x−3/2∆x) + · · · − x−1/2

∆x

]

= lim
∆x→0

[
−1

2
x−3/2∆x + · · ·

∆x

]

= −1
2
x−3/2 . (8)

2. The derivative of a composite function f(g(x)), where f and g are differentiable func-
tions, is defined as

d f(g)

dx
≡ lim

∆x→0

[
f(g(x + ∆x)) − f(g(x))

∆x

]
. (9)

This expression can be written as

d f(g)

dx
≡ lim

∆x→0

{[
f(g(x + ∆x)) − f(g(x))

g(x + ∆x) − g(x)

] [
g(x + ∆x) − g(x)

∆x

]}
. (10)

2



By defining ∆g = g(x + ∆x) − g(x), so g(x + ∆) = g(x) + ∆g, we can write

d f(g)

dx
≡ lim

∆x→0

{[
f(g(x) + ∆g) − f(g(x))

∆g

] [
g(x + ∆x) − g(x)

∆x

]}
. (11)

Since g is a continuous function (because it is differentiable), ∆g → 0 as ∆x → 0.
Thus, since

df

dg
≡ lim

∆g→0

[
f(g(x) + ∆g) − f(g(x))

∆g

]
, (12)

and
dg

dx
≡ lim

∆x→0

[
g(x + ∆x) − g(x)

∆x

]
, (13)

we arrive at the chain rule:
d f(g)

dx
=

df

dg

dg

dx
. (14)

3. (a) f(x, y) =
√

x2 + y2. The two first partial derivatives of f are calculated as

∂

∂x
(x2 + y2)1/2 = 1

2
(x2 + y2)−1/2 × 2x = x(x2 + y2)−1/2 , (15)

∂

∂y
(x2 + y2)1/2 = 1

2
(x2 + y2)−1/2 × 2y = y(x2 + y2)−1/2 . (16)

(b) f(x, y, z) = (x2+y2+z2)−1/2. The three first partial derivatives of f are calculated
as

∂

∂x
(x2 + y2 + z2)−1/2 = −1

2
(x2 + y2 + z2)−3/2 × 2x = −x(x2 + y2 + z2)−3/2 , (17)

∂

∂y
(x2 + y2 + z2)−1/2 = −1

2
(x2 + y2 + z2)−3/2 × 2y = −y(x2 + y2 + z2)−3/2 , (18)

∂

∂z
(x2 + y2 + z2)−1/2 = −1

2
(x2 + y2 + z2)−3/2 × 2z = −z(x2 + y2 + z2)−3/2 . (19)

(c) f(x, y) = ln(xy). The two first partial derivatives of f are calculated as

∂

∂x
ln(xy) =

1

xy
× y =

1

x
, (20)

∂

∂y
ln(xy) =

1

xy
× x =

1

y
. (21)
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(d) f = ex/y. The two first partial derivatives of f are calculated as

∂

∂x
= ex/y × 1

y
=

ex/y

y
, (22)

∂

∂y
= ex/y ×

(
− x

y2

)
= −xex/y

y2
. (23)

4. From the definition of the derivative in Eq. (1),

d(sin x)

dx
= lim

∆x→0

[
sin(x + ∆x) − sin x

∆x

]
. (24)

By using the identity for the sine of the sum of two angles, we have

sin(x + ∆x) = sin x cos(∆x) + cos x sin(∆x) = sin x + ∆x cos x + · · · . (25)

Substitution of this expression into Eq. (24) yields

d(sin x)

dx
= lim

∆x→0

[
(sin x + ∆x cos x) − sin x

∆x

]

= cos x . (26)

Similarly,
d(cos x)

dx
= lim

∆x→0

[
cos(x + ∆x) − cos x

∆x

]
. (27)

By using the identity for the cosine of the sum of two angles, we have

cos(x + ∆x) = cos x cos(∆x) − sin x sin(∆x) = cos x − ∆x sin x + · · · . (28)

Substitution of this expression into Eq. (27) yields

d(cos x)

dx
= lim

∆x→0

[
(cos x − ∆x sin x) − cos x

∆x

]

= − sin x . (29)

5. The Fundamental Theorem of Calculus states that∫ b

a
f(x) dx = F (b) − F (a) , (30)
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where dF/dx = f . Similarly, by reversing the limits of integration, we have∫ a

b
f(x) dx = F (a) − F (b) . (31)

By comparing the right-hand sides of Eqs. (30) and (31), we conclude that

∫ a

b
f(x) dx = −

∫ b

a
f(x) dx . (32)

6. The Fundamental Theorem of Calculus states that∫ x

a
f(s) ds = F (x) − F (a) , (33)

where dF/dx = f . By differentiating both sides with respect to x, we obtain,

d

dx

[∫ x

a
f(s) ds

]
=

dF

dx
= f(x) . (34)

Similarly, by writing the Fundamental Theorem of Calculus as

∫ b

x
f(s) ds = F (b) − F (x) , (35)

and differentiating with respect to x, we obtain

d

dx

[∫ b

x
f(s) ds

]
= −dF

dx
= −f(x) . (36)

Finally, by writing the Fundamental Theorem of Calculus as

∫ v(x)

u(x)
f(s) dx = F [v(x)] − F [u(x)] , (37)

and differentiating with respect to x using the chain rule, we obtain

d

dx

[∫ v(x)

u(x)
f(s) dx

]
=

dF

dv

dv

dx
− dF

du

du

dx
= f [v(x)]

dv

dx
− f [u(x)]

du

dx
. (38)

7. The Fundamental Theorem of Calculus states that∫ x

a
f(s) ds = F (x) − F (a) , (39)

where
dF

dx
= f . (40)
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From Part 6 of Classwork 1, we set b = x, so that we can write,∫ x

a
cos2 s ds = 1

2
(x − a) + 1

2
(sin x cos x − sin a cos a)

= 1
2
x + 1

2
sin x cos x−1

2
a − 1

2
sin a cos a︸ ︷︷ ︸

≡ C

= 1
2
x + 1

2
sin x cos +C , (41)

so that the primitive function F of cos2 x is

F (x) = 1
2
x + 1

2
sin x cos +C . (42)

To verify this result by direct differentiation, we have

dF

dx
= 1

2
+ 1

2
cos2 x − 1

2
sin2 x

= 1
2
cos2 x + 1

2
(1 − cos2 x)

= cos2 x . (43)
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