First-Year Mathematics

Solutions to Classwork 6 Directional Derivatives and the Gradient February 11, 2005

1. (a) The lines of constant $f(x, y)=y$ are parallel to the x-axis. The gradient of a function $f(x, y)$ is

$$
\begin{equation*}
\boldsymbol{\nabla} f=\frac{\partial f}{\partial x} \boldsymbol{i}+\frac{\partial f}{\partial y} \boldsymbol{j} \tag{1}
\end{equation*}
$$

so the gradient of $f(x, y)=y$ is

$$
\begin{equation*}
\nabla f=\boldsymbol{j} \tag{2}
\end{equation*}
$$

which is the unit vector in the y-direction, i.e. perpendicular to the lines of constant f.
(b) The lines of constant $g(x, y)=y^{2}$ are also parallel to the x-axis. The gradient of this function is

$$
\begin{equation*}
\boldsymbol{\nabla} g=2 y \boldsymbol{j} \tag{3}
\end{equation*}
$$

which is also parallel to the y-axis, but the magnitude $2 y$ reflects the fact that lines of constant g increase quadratically, rather than linearly, as is the case for f.
2. The surfaces of constant $f(x, y, z)=z$ are planes parallel to the $x-y$ plane. The gradient of a function $f(x, y, z)$ is

$$
\begin{equation*}
\boldsymbol{\nabla} f=\frac{\partial f}{\partial x} \boldsymbol{i}+\frac{\partial f}{\partial y} \boldsymbol{j}+\frac{\partial f}{\partial z} \boldsymbol{k} \tag{4}
\end{equation*}
$$

so the gradient of $f(x, y, z)=z$ is

$$
\begin{equation*}
\nabla f=\boldsymbol{k} \tag{5}
\end{equation*}
$$

which is the unit vector along the z-direction, i.e. perpendicular to the planes of constant f.
3. The gradient of $f(x, y, z)=x y$ is

$$
\begin{equation*}
\boldsymbol{\nabla} f=y \boldsymbol{i}+x \boldsymbol{j} \tag{6}
\end{equation*}
$$

The direction \boldsymbol{u} is given as $\boldsymbol{u}=3 \boldsymbol{i}+4 \boldsymbol{j}$. The unit vector along this direction is obtained by dividing this vector by its magnitude:

$$
\begin{equation*}
\frac{\boldsymbol{u}}{|\boldsymbol{u}|}=\frac{3}{5} \boldsymbol{i}+\frac{4}{5} \boldsymbol{j} \tag{7}
\end{equation*}
$$

Hence, the directional derivative of $x y$ along the direction of \boldsymbol{u} at $(1,1)$ is

$$
\begin{equation*}
(\boldsymbol{i}+\boldsymbol{j}) \cdot\left(\frac{3}{5} \boldsymbol{i}+\frac{4}{5} \boldsymbol{j}\right)=\frac{7}{5} . \tag{8}
\end{equation*}
$$

4. The gradient of $f(x, y, z)=x^{2}+y^{2}-z^{2}$ is

$$
\begin{equation*}
\boldsymbol{\nabla} f=2 x \boldsymbol{i}+2 y \boldsymbol{j}-2 z \boldsymbol{k} . \tag{9}
\end{equation*}
$$

The unit vector along $\boldsymbol{i}+2 \boldsymbol{j}-2 \boldsymbol{k}$ is

$$
\begin{equation*}
\frac{\boldsymbol{u}}{|\boldsymbol{u}|}=\frac{1}{3} \boldsymbol{i}+\frac{2}{3} \boldsymbol{j}-\frac{2}{3} \boldsymbol{k} . \tag{10}
\end{equation*}
$$

Hence, the derivative of f along this direction at the point $(1,1,2)$ is

$$
\begin{equation*}
(2 \boldsymbol{i}+2 \boldsymbol{j}-4 \boldsymbol{k}) \cdot\left(\frac{1}{3} \boldsymbol{i}+\frac{2}{3} \boldsymbol{j}-\frac{2}{3} \boldsymbol{k}\right)=\frac{14}{3} . \tag{11}
\end{equation*}
$$

5. The gradient of $f(x, y, z)=x^{3}-x y z+z^{3}$ is

$$
\begin{equation*}
\boldsymbol{\nabla} f=\left(3 x^{2}-y z\right) \boldsymbol{i}-x z \boldsymbol{j}+\left(3 z^{2}-x y\right) \boldsymbol{k} \tag{12}
\end{equation*}
$$

At the point $(1,1,1)$, this reduces to

$$
\begin{equation*}
2 \boldsymbol{i}-\boldsymbol{j}+2 \boldsymbol{k} \tag{13}
\end{equation*}
$$

Since this vector is normal to surfaces of constant f, and the point $(1,1,1)$ lies on the surface

$$
\begin{equation*}
x^{3}-x y z+z^{3}=1, \tag{14}
\end{equation*}
$$

the unit vector \boldsymbol{n} which points normal to this surface at the given point is

$$
\begin{equation*}
\boldsymbol{n}=\frac{\boldsymbol{\nabla} f}{|\boldsymbol{\nabla} f|}=\frac{1}{3}(2 \boldsymbol{i}-\boldsymbol{j}+2 \boldsymbol{k}) . \tag{15}
\end{equation*}
$$

6. The gradient of $T(x, y)=x^{2}-y^{2}$ is

$$
\begin{equation*}
\boldsymbol{\nabla} T=2 x \boldsymbol{i}-2 y \boldsymbol{j} \tag{16}
\end{equation*}
$$

The direction of heat flow \boldsymbol{J} is $-\boldsymbol{\nabla} T$:

$$
\begin{equation*}
\boldsymbol{J}(x, y)=-2 x \boldsymbol{i}+2 y \boldsymbol{j} \tag{17}
\end{equation*}
$$

Thus, the heat flows at the given points (x, y) are:
(a) At the origin,

$$
\begin{equation*}
\boldsymbol{J}(0,0)=\mathbf{0} \tag{18}
\end{equation*}
$$

(b) At $(1,0),(-1,0),(0,1)$, and $(0,1)$,

$$
\begin{equation*}
\boldsymbol{J}(1,0)=-2 \boldsymbol{i}, \quad \boldsymbol{J}(-1,0)=2 \boldsymbol{i}, \quad \boldsymbol{J}(0,1)=2 \boldsymbol{j}, \quad \boldsymbol{J}(0,-1)=-2 \boldsymbol{j} \tag{19}
\end{equation*}
$$

(c) At $(1,1),(-1,1),(1,-1)$, and $(-1,-1)$,

$$
\begin{array}{ll}
\boldsymbol{J}(1,1)=-2 \boldsymbol{i}+2 \boldsymbol{j}, & \boldsymbol{J}(-1,1)=2 \boldsymbol{i}+2 \boldsymbol{j} \\
\boldsymbol{J}(1,-1)=-2 \boldsymbol{i}-2 \boldsymbol{j}, & \boldsymbol{J}(-1,-1)=2 \boldsymbol{i}-2 \boldsymbol{j} \tag{20}
\end{array}
$$

The unit vectors corresponding to the directions are shown below:

The surface $T(x, y)$ with $A=1$ is:

