First-Year Mathematics

Classwork 6 Directional Derivatives and the Gradient February 11, 2005

1. (a) Consider the function

$$
f(x, y)=y
$$

What are the lines of constant f ? Determine the gradient of f (in two dimensions) and show that its direction is perpendicular to these lines.
(b) Now consider the function

$$
g(x, y)=y^{2} .
$$

Determine the gradient of g and identify the origin of any differences between $\boldsymbol{\nabla} f$ and $\boldsymbol{\nabla} g$.
2. Consider the function

$$
f(x, y, z)=z
$$

What are the surfaces of constant f ? Determine the gradient of f and show that its direction is normal to these surfaces.
3. Find the derivative of $f(x, y)=x y$ at $(1,1)$ in the direction $3 \boldsymbol{i}+4 \boldsymbol{j}$.
4. Find the derivative of $f(x, y, z)=x^{2}+y^{2}-z^{2}$ at $(1,1,2)$ in the direction $\boldsymbol{i}+2 \boldsymbol{j}-2 \boldsymbol{k}$.
5. Determine a unit vector normal to the surface

$$
x^{3}-x y z+z^{3}=1
$$

at the point $(1,1,1)$.
6. Suppose that the temperature within a region is described by the function $T(x, y)=$ $A+x^{2}-y^{2}$, where A is a constant. Given that heat flows in the direction opposite to the temperature gradient (i.e. from high temperature to low temperature), sketch the direction of heat flow at the following points:
(a) The origin.
(b) $(1,0),(-1,0),(0,1),(0,-1)$.
(c) $(1,1),(-1,1),(1,-1),(-1,-1)$.

Sketch $T(x, y)$ in a neighborhood of the origin from these heat flows.

