First-Year Mathematics

1. The integration paths are shown below:

(a) To evaluate the integral I_{1} over x, we use the relation $y=\frac{1}{2} x$ along the path to write the integrand as

$$
f(x, y)=\frac{1}{2} x^{2}+\frac{1}{2} x .
$$

The line integral from $(0,0)$ to $(2,1)$ is then carried out as an ordinary integral:

$$
\int_{0}^{2}\left(\frac{1}{2} x^{2}+\frac{1}{2} x\right) d x=\left.\frac{1}{6} x^{3}\right|_{0} ^{2}+\left.\frac{1}{4} x^{2}\right|_{0} ^{2}=\frac{4}{3}+1=\frac{7}{3} .
$$

To evaluate the integral I_{2} over y, we use $x=2 y$ along the path to write the integrand as

$$
f(x, y)=2 y^{2}+y
$$

so the integral over y is

$$
\int_{0}^{1}\left(2 y^{2}+y\right) d y=\left.\frac{2}{3} y^{3}\right|_{0} ^{1}+\left.\frac{1}{2} y^{2}\right|_{0} ^{1}=\frac{2}{3}+\frac{1}{2}=\frac{7}{6}
$$

(b) The integral I_{1} over x vanishes along the line $x=0$ (because $d x=0$). Along $y=1$ (from $x=0$ to $x=2$), this integral is

$$
\int_{0}^{2}(x+1) d x=\left.\frac{1}{2} x^{2}\right|_{0} ^{2}+\left.x\right|_{0} ^{2}=2+2=4
$$

For the integral I_{2} over y, along $x=0, f(x, y)=y$ so the integral over this segment is

$$
\int_{0}^{1} y d y=\left.\frac{1}{2} y^{2}\right|_{0} ^{1}=\frac{1}{2}
$$

For the integral along $y=1, d y=0$, so the integral along this segment vanishes.
(c) For the integral I_{1} over x, we have

$$
f[x(t), y(t)]=2 t^{3}+t^{2}
$$

along the path and $d x=2 d t$. Thus, this integral becomes

$$
\int_{0}^{1}\left(4 t^{3}+2 t^{2}\right) d t=\left.t^{4}\right|_{0} ^{1}+\left.\frac{2}{3} t^{3}\right|_{0} ^{1}=1+\frac{2}{3}=\frac{5}{3} .
$$

For the integral I_{2} over y, we have $d y=2 t d t$ along the path, so this integral is

$$
\int_{0}^{1}\left(4 t^{4}+2 t^{3}\right) d t=\left.\frac{4}{5} t^{5}\right|_{0} ^{1}+\left.\frac{1}{2} t^{4}\right|_{0} ^{1}=\frac{4}{5}+\frac{1}{2}=\frac{13}{10}
$$

2. The integration path is shown below:

Along the line $y=x^{2}$, the function $f(x, y)=x^{2}+y$ becomes

$$
f(x, y)=x^{2}+x^{2}=2 x^{2}
$$

Thus, the integral is

$$
2 \int_{0}^{1} x^{2} d x=\left.\frac{2}{3} x^{3}\right|_{0} ^{1}=\frac{2}{3} .
$$

But we can also carry out this integral over y, because along this curve $f(x, y)$ can be written as

$$
f(x, y)=y+y=2 y
$$

Along $y=x^{2}$, we have that $d y=2 x d x$, or that

$$
d x=\frac{d y}{2 x}=\frac{d y}{2 \sqrt{y}}
$$

Thus, the integral over y :

$$
\int_{0}^{1} \sqrt{y} d y=\left.\frac{2}{3} y^{3 / 2}\right|_{0} ^{1}=\frac{2}{3},
$$

as before.
3. The integration path is shown below:

Along the segments where x is constant, i.e. $(1,1) \rightarrow(1,2)$ and $(2,2) \rightarrow(2,1), d x=0$, so these contributions to the integral vanish. Along the segment $(1,2) \rightarrow(2,2), y=2$ and the contribution to the integral is

$$
2 \int_{1}^{2} d x=2
$$

Along the segment $(2,1) \rightarrow(1,1), y=1$ and the contribution to the integral is

$$
\int_{2}^{1} d x=-1
$$

Thus, for the prescribed path,

$$
\oint y d x=2-1=1
$$

which is equal to the area enclosed by this path (i.e. a square with sides of unit length).
4. The closed curve is parametrized by $x=a \cos t$ and $y=-b \sin t$ for $0 \leq t<2 \pi$, which traces out a path in the clockwise direction, as shown below for the case $a>b$:

The values of x and y so parametrized satisfy the equation

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,
$$

which is a circle if $a=b$ and an ellipse if $a \neq b$. To integrate $y d x$ over this curve, we convert it into an integral over t by using

$$
y=-b \sin t, \quad d x=-a \sin t d t
$$

Thus, the integral becomes

$$
\oint y d x=a b \int_{0}^{2 \pi} \sin ^{2} t d t=\pi a b
$$

which is the area of an ellipse $(a \neq b)$ or a circle $(a=b)$ (cf. Part 5, Classwork 2).

