First-Year Mathematics

Solutions to Classwork 5 February 4, 2005

1. The integration paths are shown below:

1

(b)

(a) To evaluate the integral I over z, we use the relation y = %x along the path to

write the integrand as
flz,y) = 2%+ iz
The line integral from (0,0) to (2,1) is then carried out as an ordinary integral:
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To evaluate the integral Iy over y, we use x = 2y along the path to write the
integrand as

fla,y) =24 +y,
so the integral over y is
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The integral I; over x vanishes along the line x = 0 (because dx = 0). Along
y =1 (from z = 0 to x = 2), this integral is
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For the integral I, over y, along = = 0, f(z,y) = y so the integral over this

segment is
1
/0 ydy = 3y°

For the integral along y = 1, dy = 0, so the integral along this segment vanishes.
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(c) For the integral I; over z, we have
fle(t),y(t)] = 27 + ¢*

along the path and dx = 2dt. Thus, this integral becomes
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For the integral I over y, we have dy = 2t dt along the path, so this integral is
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2. The integration path is shown below:
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Along the line y = 22, the function f(x,y) = 2 + y becomes
f(z,y) = 2%+ 2* = 227,

Thus, the integral is
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But we can also carry out this integral over y, because along this curve f(z,y) can be

written as
fle,y) =y+y=2y.

Along y = 22, we have that dy = 2x dz, or that
dy _ dy
de = — = ——.
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Thus, the integral over y:
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3. The integration path is shown below:
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Along the segments where z is constant, i.e. (1,1) — (1,2) and (2,2) — (2

.1
so these contributions to the integral vanish. Along the segment (1,2) — (2,2), y = 2
and the contribution to the integral is
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Along the segment (2,1) — (1,1), y = 1 and the contribution to the integral is
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which is equal to the area enclosed by this path (i.e. a square with sides of unit length).

Thus, for the prescribed path,

4. The closed curve is parametrized by x = acost and y = —bsint for 0 < t < 27, which
traces out a path in the clockwise direction, as shown below for the case a > b:

X

The values of x and y so parametrized satisfy the equation
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which is a circle if @ = b and an ellipse if a # b. To integrate y dx over this curve, we
convert it into an integral over ¢ by using

y = —bsint, dr = —asintdt.
Thus, the integral becomes
2
%ydm = ab/ sin®tdt = wab,
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which is the area of an ellipse (a # b) or a circle (a = b) (cf. Part 5, Classwork 2).



