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1. The range of x is given as 0 ≤ x ≤ 1. If we take the range of y to be 0 ≤ y ≤ 1
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Carrying out each of the one-dimensional integrals yields
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2. The radius r at height z of the cone is a linear function of z:

r(z) = A + Bz .

By requiring that r(0) = R, we obtain A = R, and by requiring that r(h) = 0, we obtain
B = −R/h. Thus,

r(z) =
R

h
(h − z) .

The volume of the cone can be thought of as composed of incremental volumes dV given
by

dV = πr2(z) dz ,

which are the areas of circles of radius r(z) multiplied by their “thickness” dz. Hence,
the volume of the cone can be calculated as

∫ ∫ ∫
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dx dy dz = π

∫ h
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r2(z) dz .



By expanding the factor r2(z) and carrying the integration over z, we obtain
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3. (a) To determine the area of the shaded region by using circular polar coordinates (r, φ),
we need to determine the ranges of r and φ for any point within this region. From the
coordinates of A, B, and C, the range of φ is seen to be

0 ≤ φ ≤ 1
4π .

The range of r cannot be determined independently because the upper bound of the
integration region is given by r = 2 cos(2φ). Thus, for a given value of φ, the range of r
within the shaded region is therefore given by

0 ≤ r ≤ 2 cos(2φ) .

(b) Since the shaded region corresponds to 1
8 th of the area A of the clover leaf, the ranges

of the variables obtained in (a) allow us to write A as the integral
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(c) The evaluation of A is as follows:
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