First-Year Mathematics

Solutions to Classwork 3 Double and Triple Integrals

1. The range of x is given as $0 \leq x \leq 1$. If we take the range of y to be $0 \leq y \leq \frac{1}{2}$, then the range of z is bounded from below by y and from above by $\frac{1}{2}$. Hence, the volume integral over this region is

$$
\iiint_{V} d x d y d z=\int_{0}^{1} d x \int_{0}^{1 / 2} d y \int_{y}^{1 / 2} d z
$$

Carrying out each of the one-dimensional integrals yields

$$
\begin{aligned}
\int_{0}^{1} d x \int_{0}^{1 / 2} d y \int_{y}^{1 / 2} d z & =\underbrace{\int_{0}^{1} d x}_{1} \int_{0}^{1 / 2} d y\left(\left.z\right|_{y} ^{1 / 2}\right)=\int_{0}^{1 / 2}\left(\frac{1}{2}-y\right) d y \\
& =\left.\frac{y}{2}\right|_{0} ^{1 / 2}-\left.\frac{y^{2}}{2}\right|_{0} ^{1 / 2} \\
& =\frac{1}{4}-\frac{1}{8}=\frac{1}{8}
\end{aligned}
$$

2. The radius r at height z of the cone is a linear function of z :

$$
r(z)=A+B z .
$$

By requiring that $r(0)=R$, we obtain $A=R$, and by requiring that $r(h)=0$, we obtain $B=-R / h$. Thus,

$$
r(z)=\frac{R}{h}(h-z) .
$$

The volume of the cone can be thought of as composed of incremental volumes $d V$ given by

$$
d V=\pi r^{2}(z) d z
$$

which are the areas of circles of radius $r(z)$ multiplied by their "thickness" $d z$. Hence, the volume of the cone can be calculated as

$$
\iiint_{V} d x d y d z=\pi \int_{0}^{h} r^{2}(z) d z
$$

By expanding the factor $r^{2}(z)$ and carrying the integration over z, we obtain

$$
\begin{aligned}
\pi \int_{0}^{h} r^{2}(z) d z & =\frac{\pi R^{2}}{h^{2}} \int_{0}^{h}\left(h^{2}-2 h z+z^{2}\right) d z \\
& =\frac{\pi R^{2}}{h^{2}}\left\{\left.h^{2} z\right|_{0} ^{h}-\left.h z^{2}\right|_{0} ^{h}+\left.\frac{1}{3} z^{3}\right|_{0} ^{h}\right\} \\
& =\frac{\pi R^{2}}{h^{2}}\left(h^{3}-h^{3}+\frac{1}{3} h^{3}\right) \\
& =\frac{1}{3} \pi R^{2} h
\end{aligned}
$$

3. (a) To determine the area of the shaded region by using circular polar coordinates (r, ϕ), we need to determine the ranges of r and ϕ for any point within this region. From the coordinates of A, B, and C , the range of ϕ is seen to be

$$
0 \leq \phi \leq \frac{1}{4} \pi
$$

The range of r cannot be determined independently because the upper bound of the integration region is given by $r=2 \cos (2 \phi)$. Thus, for a given value of ϕ, the range of r within the shaded region is therefore given by

$$
0 \leq r \leq 2 \cos (2 \phi)
$$

(b) Since the shaded region corresponds to $\frac{1}{8}$ th of the area A of the clover leaf, the ranges of the variables obtained in (a) allow us to write A as the integral

$$
A=8 \int_{0}^{\frac{1}{4} \pi} d \phi \int_{0}^{2 \cos (2 \phi)} r d r
$$

(c) The evaluation of A is as follows:

$$
\begin{aligned}
A & =8 \int_{0}^{\frac{1}{4} \pi} d \phi \int_{0}^{2 \cos (2 \phi)} r d r \\
& =8 \int_{0}^{\frac{1}{4} \pi} d \phi\left\{\left.\frac{r^{2}}{2}\right|_{0} ^{2 \cos (2 \phi)}\right\} \\
& =16 \int_{0}^{\frac{1}{4} \pi} d \phi \cos ^{2}(2 \phi) \quad\left(t=\frac{1}{2} \phi\right) \\
& =8 \underbrace{\int_{0}^{\frac{1}{2} \pi} d t \cos ^{2} t}_{\frac{1}{4} \pi} \\
& =2 \pi
\end{aligned}
$$

