First-Year Mathematics

Classwork 3	Double and Triple Integrals	January 21, 2005
-------------	-----------------------------	------------------

1. Compute the volume of the region for $0 \le x \le 1$ that is bounded from below by the plane z = y and from above by the plane $z = \frac{1}{2}$. This region is shown below:

2. Calculate the volume of a cone with base radius R and height h, as shown below for R=1 and h=2

Take the base to lie in the x-y plane and begin by observing that the radius r of the cone at height z is given by

$$r(z) = \frac{R}{h}(h-z)$$

Then, construct the total volume of the cone by integrating the differential volumes $\pi r^2(z) dz$ at each height:

$$\iiint_V dx \, dy \, dz = \pi \int_0^h r^2(z) \, dz$$

Hence, obtain

$$\iiint_V dx \, dy \, dz = \frac{1}{3}\pi R^2 h$$

3. The figure below shows a polar plot of the function $r(\phi) = 2\cos(2\phi)$, for $0 \le \phi < 2\pi$:

The points in the figure label polar coordinates (r, ϕ) as follows:

A: (2,0), B: $(1,\frac{1}{6}\pi)$, C: $(0,\frac{1}{4})$.

Compute the area enclosed by this "clover leaf" in circular polar coordinates by following the procedure outlined below:

- (a) The symmetry of the graph means that the total area is 8 times the area between the x-axis and the curve ABC (shown shaded in the figure). Determine the ranges of ϕ and r within this region.
- (b) Show that the area A enclosed by the clover leaf is given by

$$A = 8 \int_0^{\frac{1}{4}\pi} d\phi \int_0^{2\cos(2\phi)} r \, dr \, .$$

(c) Evaluate this integral to obtain

 $A=2\pi\,.$