First-Year Mathematics

Classwork 3
Double and Triple Integrals
January 21, 2005

1. Compute the volume of the region for $0 \leq x \leq 1$ that is bounded from below by the plane $z=y$ and from above by the plane $z=\frac{1}{2}$. This region is shown below:

2. Calculate the volume of a cone with base radius R and height h, as shown below for $R=1$ and $h=2$

Take the base to lie in the $x-y$ plane and begin by observing that the radius r of the cone at height z is given by

$$
r(z)=\frac{R}{h}(h-z)
$$

Then, construct the total volume of the cone by integrating the differential volumes $\pi r^{2}(z) d z$ at each height:

$$
\iiint_{V} d x d y d z=\pi \int_{0}^{h} r^{2}(z) d z
$$

Hence, obtain

$$
\iiint_{V} d x d y d z=\frac{1}{3} \pi R^{2} h
$$

3. The figure below shows a polar plot of the function $r(\phi)=2 \cos (2 \phi)$, for $0 \leq \phi<2 \pi$:

The points in the figure label polar coordinates (r, ϕ) as follows:

$$
\mathrm{A}:(2,0), \quad \mathrm{B}:\left(1, \frac{1}{6} \pi\right), \quad \mathrm{C}:\left(0, \frac{1}{4}\right) .
$$

Compute the area enclosed by this "clover leaf" in circular polar coordinates by following the procedure outlined below:
(a) The symmetry of the graph means that the total area is 8 times the area between the x-axis and the curve ABC (shown shaded in the figure). Determine the ranges of ϕ and r within this region.
(b) Show that the area A enclosed by the clover leaf is given by

$$
A=8 \int_{0}^{\frac{1}{4} \pi} d \phi \int_{0}^{2 \cos (2 \phi)} r d r
$$

(c) Evaluate this integral to obtain

$$
A=2 \pi
$$

