First-Year Mathematics

1. The area to be integrated is shown shaded below:

(a) For x fixed $(0 \leq x \leq 1)$, the range of y is $0 \leq y \leq 1-x$ and for y fixed $(0 \leq y \leq 1)$, the range of x is $0 \leq x \leq 1-y$.
(b) In the first case in (b), the area of A is represented as

$$
A=\int_{0}^{1} d x \int_{0}^{1-x} d y
$$

where the integral is carried out first over y and then over x. Evaluating the integrals, we obtain

$$
A=\int_{0}^{1}(1-x) d x=\left.x\right|_{0} ^{1}-\left.\frac{1}{2} x^{2}\right|_{0} ^{1}=1-\frac{1}{2}=\frac{1}{2}
$$

which, by inspection of the diagram in (a), is the area of A.
Alternatively, the area of A can be written as

$$
A=\int_{0}^{1} d y \int_{0}^{1-y} d x
$$

where now the integral is carried out first over x and then over y. Evaluation of this integral also yields $A=\frac{1}{2}$.
(c) Either of the integrals in (c) can be used to integrate $x y$ over A. Thus,

$$
\begin{aligned}
\int_{0}^{1} d x \int_{0}^{1-x} d y x y & =\int_{0}^{1} x d x \int_{0}^{1-x} y d y \\
& =\frac{1}{2} \int_{0}^{1} x(1-x)^{2} d x \\
& =\left.\frac{1}{4} x^{2}\right|_{0} ^{1}-\left.\frac{1}{3} x^{3}\right|_{0} ^{1}+\left.\frac{1}{8} x^{4}\right|_{0} ^{1}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{4}-\frac{1}{3}+\frac{1}{8} \\
& =\frac{1}{24}
\end{aligned}
$$

2. The area to be integrated is shown in the shaded region below:

(a) For fixed x, the range of y is $x^{2} \leq y \leq x$. The corresponding range of x is $0 \leq x \leq 1$.
(b) Given the results in (b), the area of A is written as a double integral as

$$
A=\int_{0}^{1} d x \int_{x^{2}}^{x} d y
$$

(c) Evaluating A, yields

$$
A=\int_{0}^{1}\left(x^{2}-x\right) d x=\left.\frac{1}{3} x^{3}\right|_{0} ^{1}-\left.\frac{1}{2} x^{2}\right|_{0} ^{1}=\frac{1}{3}-\frac{1}{2}=\frac{1}{6}
$$

3. The integral in Part 2 can also be evaluated by reversing the order of integration. Thus, for fixed y, the range of x is $y \leq x \leq \sqrt{y}$ and the range of y is $0 \leq y \leq 1$. Thus, we can represent the area of A as a double integral in the alternative form

$$
A=\int_{0}^{1} d y \int_{y}^{\sqrt{y}} d x
$$

Evaluating this integral yields

$$
A=\int_{0}^{1}(\sqrt{y}-y) d y=\left.\frac{2}{3} y^{3 / 2}\right|_{0} ^{1}-\left.\frac{1}{2} y^{2}\right|_{0} ^{1}=\frac{2}{3}-\frac{1}{2}=\frac{1}{6}
$$

which agrees with the result in Part 2(c).
4. An alternative way of obtaining the area of the region in Parts 2 and 3 is to calculate the difference between the ordinary integrals of $y=x$ and $y=x^{2}$ between $x=0$ and $x=1$. Accordingly, we have

$$
A=\int_{0}^{1} x d x-\int_{0}^{1} x^{2} d x=\left.\frac{1}{2} x^{2}\right|_{0} ^{1}-\left.\frac{1}{3} x^{3}\right|_{0} ^{1}=\frac{1}{2}-\frac{1}{3}=\frac{1}{6},
$$

which, as expected, is the same result obtained in Parts 2 and 3.
5. By introducing new variables x^{\prime} and y^{\prime} such that $x=a x^{\prime}$ and $y=b y^{\prime}$, the equation of the ellipse becomes

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=x^{\prime 2}+y^{\prime 2}=1, \tag{1}
\end{equation*}
$$

which, in the $\left(x^{\prime}, y^{\prime}\right)$ coordinate system is the equation of a circle of unit radius centered at the origin. Thus, the area integral is transformed as follows:

$$
\begin{equation*}
\iint_{A} d x d y=a b \iint_{A^{\prime}} d x^{\prime} d y^{\prime} \tag{2}
\end{equation*}
$$

where A the area of the ellipse and A^{\prime} is the area of the circle. Transforming the second integral into circular polar coordinates,

$$
\begin{equation*}
x^{\prime}=r \cos \phi, \quad y^{\prime}=r \sin \phi, \tag{3}
\end{equation*}
$$

with

$$
\begin{equation*}
0 \leq r \leq 1, \quad 0 \leq \phi<2 \pi \tag{4}
\end{equation*}
$$

we have

$$
\begin{equation*}
\iint_{A^{\prime}} d x^{\prime} d y^{\prime}=\underbrace{\int_{0}^{1} r d r}_{\frac{1}{2}} \underbrace{\int_{0}^{2 \pi} d \phi}_{2 \pi}=\pi \tag{5}
\end{equation*}
$$

Thus, the area of an ellipse is

$$
\begin{equation*}
\iint_{A} d x d y=\pi a b \tag{6}
\end{equation*}
$$

