First-Year Mathematics

1. Consider the region A in the $x-y$ plane bounded by the x-axis, the y-axis, and the line $y=1-x$, shown shaded below:

Evaluate the integral of $f(x, y)=x y$ over A by following the steps below.
(a) For a fixed value of x (or y) determine the corresponding values of y (or x).
(b) Verify that you have the correct limits by calculating the area of A.
(c) Evaluate the integral of $x y$ over A.
2. Consider the region in the $x-y$ plane bounded from above by $y=x$ and from below by $y=x^{2}$ for $0 \leq x \leq 1$, shown shaded below:

The integral

$$
\iint d x d y
$$

over this region represents its area. Compute this area by integrating first with respect to x and then with respect to y. Proceed as follows:
(a) For a fixed value of x, determine the corresponding range of y.
(b) Hence, show that the area A represented by the double integral is now given by

$$
A=\int_{0}^{1} d x \int_{x^{2}}^{x} d y
$$

(c) Evaluate this integral to obtain

$$
A=\frac{1}{6} .
$$

3. Evaluate the area in Part 2 by reversing the order of integration, i.e., by identifying the range of x for a fixed value of y. Show that the double integral representing the area is

$$
A=\int_{0}^{1} d y \int_{y}^{\sqrt{y}} d x
$$

Evaluate this integral and show that the area is the same as that calculated in Part 2.
4. Obtain the area A in Parts 2 and 3 by evaluating the difference between appropriate one-dimensional integrals.
5. The equation of an ellipse is

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

where a and b are constants. Use circular polar coordinates to show that the area of this ellipse is $\pi a b$.

Hint: First transform (x, y) into variables $\left(x^{\prime}, y^{\prime}\right)$ where the ellipse reduces to a circle,

$$
x^{\prime 2}+y^{\prime 2}=1,
$$

and calculate the area of this circle taking into account the effect of the variable change on the elements of integration.

