First-Year Mathematics

Solutions to Classwork 1 Derivatives and Integrals
January 7, 2005

1. The derivative of x^{n} with respect to x is defined as

$$
\frac{d x^{n}}{d x}=\lim _{\Delta x \rightarrow 0}\left[\frac{(x+\Delta x)^{n}-x^{n}}{\Delta x}\right]
$$

The expansion of $(x+\Delta x)^{n}$ is, according to the binomial theorem, given by

$$
(x+\Delta x)^{n}=x^{n}+n x^{n-1} \Delta x+\frac{1}{2} n(n-1) x^{n-2}(\Delta x)^{2}+\cdots
$$

Substitution of this expression into the definition of the derivative and taking the limit $\Delta x \rightarrow 0$ yields

$$
\frac{d x^{n}}{d x}=\lim _{\Delta x \rightarrow 0}\left(n x^{n-1}+\frac{1}{2} x^{n-2} \Delta x+\cdots\right)=n x^{n-1}
$$

2. The derivative of the quantity $h(x)=a f(x)+b g(x)$ is

$$
\begin{aligned}
\frac{d h}{d x} & =\lim _{\Delta x \rightarrow 0}\left[\frac{h(x+\Delta x)-h(x)}{\Delta x}\right] \\
& =\lim _{\Delta x \rightarrow 0}\left\{\frac{1}{\Delta x}[a f(x+\Delta x)+b g(x+\Delta x)-a f(x)-b g(x)]\right\} \\
& =a \lim _{\Delta x \rightarrow 0}\left[\frac{f(x+\Delta x)-f(x)}{\Delta x}\right]+b \lim _{\Delta x \rightarrow 0}\left[\frac{g(x+\Delta x)-g(x)}{\Delta x}\right] \\
& =a \frac{d f}{d x}+b \frac{d g}{d x}
\end{aligned}
$$

3. The derivative of the product of two functions $f g$ is defined as

$$
\frac{d(f g)}{d x}=\lim _{\Delta x \rightarrow 0}\left[\frac{f(x+\Delta x) g(x+\Delta x)-f(x) g(x)}{\Delta x}\right]
$$

By using the identity,

$$
f(t) g(t)-f(x) g(x)=f(t)[g(t)-g(x)]+g(x)[f(t)-f(x)]
$$

and making the substitution $t \rightarrow x+\Delta x$, we have

$$
\begin{aligned}
\frac{d(f g)}{d x} & =\lim _{\Delta x \rightarrow 0}\left\{f(x+\Delta x)\left[\frac{g(x+\Delta x)-g(x)}{\Delta x}\right]+g(x)\left[\frac{f(x+\Delta x)-f(x)}{\Delta x}\right]\right\} \\
& =f(x) \frac{d g}{d x}+g(x) \frac{d f}{d x}
\end{aligned}
$$

4. By setting $g=1 / f$ in the product rule for derivatives (assuming, of course, that $f(x) \neq$ 0), we have that $f g=1$. Since the derivative of a constant vanishes, we obtain

$$
\frac{d f}{d x} \frac{1}{f}+f \frac{d}{d x}\left(\frac{1}{f}\right)=0 .
$$

Solving for the derivative of $1 / f$ yields

$$
\frac{d}{d x}\left(\frac{1}{f}\right)=-\frac{1}{f^{2}} \frac{d f}{d x} .
$$

5. By writing the quotient f / g as the product $f(1 / g)$, we can use the product rule in Part 3 together with the result in Part 4 to write

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{f}{g}\right) & =\frac{d}{d x}\left(f \times \frac{1}{g}\right)=\frac{d f}{d x} \frac{1}{g}+f \frac{d}{d x}\left(\frac{1}{g}\right) \\
& =\frac{d f}{d x} \frac{1}{g}-\frac{f}{g^{2}} \frac{d g}{d x} \\
& =\frac{1}{g^{2}}\left(\frac{d f}{d x} g-f \frac{d g}{d x}\right) .
\end{aligned}
$$

6. Integration by parts proceeds by writing

$$
\begin{aligned}
\int_{a}^{b} \cos ^{2} x d x & =\int_{a}^{b} \underbrace{\cos x}_{u} \underbrace{\cos x}_{d v} d x=\left.\sin x \cos x\right|_{a} ^{b}+\int_{a}^{b} \sin ^{2} x d x \\
& =\left.\sin x \cos x\right|_{a} ^{b}+\int_{a}^{b}\left(1-\cos ^{2} x\right) d x \\
& =\left.\sin x \cos x\right|_{a} ^{b}+\int_{a}^{b} d x-\int_{a}^{b} \cos ^{2} x d x
\end{aligned}
$$

Rearranging, we obtain

$$
\begin{aligned}
\int_{a}^{b} \cos ^{2} x d x & =\frac{1}{2} \int_{a}^{b} d x+\left.\frac{1}{2} \sin x \cos x\right|_{a} ^{b} \\
& =\frac{1}{2}(b-a)+\frac{1}{2}(\sin b \cos b-\sin a \cos a)
\end{aligned}
$$

Now, by using the trigonometric identity $\cos (2 x)=2 \cos ^{2} x-1$, the integral to be evaluated is

$$
\begin{aligned}
\int_{a}^{b} \cos ^{2} x d x & =\frac{1}{2} \int_{a}^{b} d x+\frac{1}{2} \int_{a}^{b} \cos (2 x) d x \\
& =\left.\frac{1}{2} x\right|_{a} ^{b}+\left.\frac{1}{4} \sin (2 x)\right|_{a} ^{b} \\
& =\frac{1}{2}(b-a)+\frac{1}{4}[\sin (2 b)-\sin (2 a)] \\
& =\frac{1}{2}(b-a)+\frac{1}{2}(\sin b \cos b-\sin a \cos a)
\end{aligned}
$$

Since $\sin (n \pi)=0$, for any integer n, we have that

$$
\int_{0}^{n \pi} \cos ^{2} x d x=\frac{1}{2} n \pi
$$

