First-Year Mathematics
Solutions to Classwork 1 Derivatives and Integrals January 7, 2005

1. The derivative of ™ with respect to x is defined as
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The expansion of (x + Ax)™ is, according to the binomial theorem, given by
(z+ Az)" = 2™ + na" Az + %n(n — D" (Ax)? +--- .

Substitution of this expression into the definition of the derivative and taking the limit
Ax — 0 yields
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2. The derivative of the quantity h(x) = af(x) + bg(x) is
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3. The derivative of the product of two functions fg is defined as
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By using the identity,



and making the substitution ¢t — =z + Az, we have
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4. By setting g = 1/f in the product rule for derivatives (assuming, of course, that f(z) #
0), we have that fg = 1. Since the derivative of a constant vanishes, we obtain
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Solving for the derivative of 1/f yields
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5. By writing the quotient f/g as the product f(1/g), we can use the product rule in Part
3 together with the result in Part 4 to write
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6. Integration by parts proceeds by writing
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Rearranging, we obtain
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= 5(b—a)+ 3(sinbcosb —sinacosa).
Now, by using the trigonometric identity cos(2z) = 2cos?x — 1, the integral to be
evaluated is
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Since sin(n7) = 0, for any integer n, we have that
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