First-Year Mathematics

Classwork 1 Derivatives and Integrals January 7, 2005

1. Use the definition of the derivative to prove the following formula:

for any positive integer n.

2. Show that differentiation is a linear operation, i.e. show that, for any two differentiable

functions f and g,
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where a and b are constants.

3. Suppose that we have two differentiable functions f(z) and g(x). The derivative of their
product fg is defined as

o [ fl@+ Az)g(x + Ax) — f(x)g(z)
de Alalcrgo Ax

Use the identity

F®)g(t) = f@)g(x) = f(t)[g(t) — 9(x)] + g(2) [f(t) — f(2)],

together with an appropriate identification of ¢, to obtain the well-known product rule
for derivatives:
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4. Use the result of Part 3 to deduce that
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Hint: Take g = 1/f in the product rule for derivatives.
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5. Use the result of Parts 3 and 4 to obtain the derivative of the quotient of two differentiable

functions f and g:
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6. Evaluate the following indefinite integral,

b
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by using integration by parts to obtain
b
/ cos’zdr = 2(b—a) + 3(sinbcosb —sinacosa) .

Show that this result can also be obtained by using the trigonometric identity
cos(2z) = 2cos’z — 1.

Determine the value of the integral

nm
/ cos? xdx ,
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where n is any positive integer.



