First-Year Mathematics

Classwork 1
Derivatives and Integrals
January 7, 2005

1. Use the definition of the derivative to prove the following formula:

$$
\frac{d x^{n}}{d x}=n x^{n-1}
$$

for any positive integer n.
2. Show that differentiation is a linear operation, i.e. show that, for any two differentiable functions f and g,

$$
\frac{d}{d x}[a f(x)+b g(x)]=a \frac{d f}{d x}+b \frac{d g}{d x}
$$

where a and b are constants.
3. Suppose that we have two differentiable functions $f(x)$ and $g(x)$. The derivative of their product $f g$ is defined as

$$
\frac{d(f g)}{d x}=\lim _{\Delta x \rightarrow 0}\left[\frac{f(x+\Delta x) g(x+\Delta x)-f(x) g(x)}{\Delta x}\right]
$$

Use the identity

$$
f(t) g(t)-f(x) g(x)=f(t)[g(t)-g(x)]+g(x)[f(t)-f(x)]
$$

together with an appropriate identification of t, to obtain the well-known product rule for derivatives:

$$
\frac{d(f g)}{d x}=\frac{d f}{d x} g+f \frac{d g}{d x}
$$

4. Use the result of Part 3 to deduce that

$$
\frac{d}{d x}\left[\frac{1}{f(x)}\right]=-\frac{1}{f^{2}} \frac{d f}{d x}
$$

Hint: Take $g=1 / f$ in the product rule for derivatives.
5. Use the result of Parts 3 and 4 to obtain the derivative of the quotient of two differentiable functions f and g :

$$
\frac{d}{d x}\left(\frac{f}{g}\right)=\frac{1}{g^{2}}\left(\frac{d f}{d x} g-f \frac{d g}{d x}\right) .
$$

6. Evaluate the following indefinite integral,

$$
\int_{a}^{b} \cos ^{2} x d x
$$

by using integration by parts to obtain

$$
\int_{a}^{b} \cos ^{2} x d x=\frac{1}{2}(b-a)+\frac{1}{2}(\sin b \cos b-\sin a \cos a)
$$

Show that this result can also be obtained by using the trigonometric identity

$$
\cos (2 x)=2 \cos ^{2} x-1
$$

Determine the value of the integral

$$
\int_{0}^{n \pi} \cos ^{2} x d x
$$

where n is any positive integer.

