
Chapter 8

Ordinary Differential Equations

Many physical phenomena are described by a function whose value at a given
point depends on its values at neighboring points. Thus, the equation de-
termining this function contains derivatives of the function, such as a first
derivative to indicate the slope or a velocity, a second derivative to indicate
the curvature or an acceleration, and so on. Such an equation, which estab-
lishes a relation between the function and its derivatives, is called a differential
equation.

Differential equations fall into one of two basic categories that are distin-
guished by the number of independent variables for the function in question.
A differential equation for a function of a single independent variable contains
only ordinary derivatives of that function and is called an ordinary differential
equation. A differential equation for a function of two or more independent
variables contains partial derivatives of the function and therefore is called a
partial differential equation.

The fundamental equations at the heart of almost all areas of science and
engineering are expressed as differential equations. Among the best known of
these are Newton’s second law of motion in mechanics, Maxwell’s equations in
electromagnetism, Schrödinger’s equation and Dirac’s equations in quantum
mechanics, the Navier–Stokes equation in fluid mechanics and aerodynam-
ics, Einstein’s equations in general relativity, the Fokker–Planck equation in
nonequilibrium statistical mechanics, the Hodgkin–Huxley equation in cel-
lular biology, and the Black–Scholes equation in quantitative finance. The
widespread use of differential equations is evident in many aspects of mod-

115
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ern life, including weather prediction, transportation, communication, and
macroeconomic forecasting, to name just a few. In all of these cases, the
differential equations embody the characteristics of specific natural or social
phenomena, often manifesting unexpected complexity, which are most clearly
revealed by examining their solutions in particular cases.

8.1 Notation and Nomenclature

An ordinary differential equation for a function y of a single independent
variable x is a functional relationship between x, y and the derivatives of
y. The most general form of an ordinary differential equation can thus be
written as

F (x, y, y′, y′′, . . .) = 0 , (8.1)

where F is a known function and the primes in the argument list of F signify
derivatives of y with respect to x:

y′ ≡ dy

dx
, y′′ ≡ d2y

dx2
, · · · . (8.2)

When using primes is inconvenient, the nth derivative of y is indicated with
a superscript:

y(n) ≡ dny

dxn
. (8.3)

A solution y of (8.1) is an expression which, when substituted into (8.1),
results in an identity.

The order of a differential equation is the order of the highest derivative
appearing in the argument list of F in (8.1). For example, the most general
form of a first-order ordinary differential equation is

F (x, y, y′) = 0 . (8.4)

The general form of an nth-order ordinary differential equation is therefore
given by the expression

F
[
x, y, y′, . . . , y(n)

]
= 0 . (8.5)

If the function F in these equations is a polynomial in the highest-order
derivative of y appearing in its argument list, then the degree of the differ-
ential equation is the power to which this highest derivative is raised, i.e. the
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degree of that polynomial. An equation is said to be linear if F is of first
degree in y and in each of the derivatives appearing as arguments of F . Thus,
the general form of a linear nth-order ordinary differential equation is

an(x)
dny

dxn
+ · · · + a1(x)

dy

dx
+ a0(x)y(x) = f(x) , (8.6)

where f(x) and the coefficients a1(x), . . . , an(x) are known functions. If f = 0
this differential equation is said to be homogeneous; otherwise, it is inhomo-
geneous.

Classifying differential equations according to order and degree is useful
because the methods that are appropriate for solving equations depend very
strongly on these quantities. The solution of linear equations, in particular,
benefits from a vast analytic (and computational) methodology that began
with the work of Newton and Leibniz in the 17th century. The situation
for nonlinear and quasi-linear equations is substantially different. Although
there is abundant work on particular equations, there is not the wealth of
general analytic techniques that are available for solving linear equations.
The reason for this is the superposition principle for linear equations, which
means that any linear combination of solutions of a linear equation is also a
solution of that equation. This facilitates immense flexibility in constructing
general solutions from superpositions of elementary solutions.

8.2 First-Order Equations

8.2.1 Radioactive Decay

We begin our discussion with first-order equations. Our first example is based
on the phenomenon of radioactive decay. We denote by Q(t) the amount of
material present at time t. This material decays at a rate r proportional to
the amount of material present. The differential equation that describes this
process is

dQ

dt
= −rQ , (8.7)

where the minus sign indicates that the amount of material decreases with
time. We will solve this equation, which is a linear equation, by using two
standard methods.
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Method 1: Trial solution

We attempt to solve this equation with a solution of the form Q(t) = emt,
where m is to be determined. Substituting this expression into Eq. (8.7), we
find

dQ

dt
= memt = −remt , (8.8)

or,

(m + r)emt = 0 . (8.9)

Thus, we can obtain a solution if we set m = −r (since the exponential is
nonzero for finite x and finite m). The most general solution we can write
for Eq. (8.7) is, therefore,

Q(t) = Ae−rt , (8.10)

where A is any constant. We can determine A by appealing to the phys-
ical situation described by our differential equation. If we set t = 0, then
Q(0) should correspond to the amount of material initially present, which we
denote by Q0. Accordingly,

Q(0) = A = Q0 . (8.11)

Thus, the solution of Eq. (8.7) for the amount of material at time t is

Q(t) = Q0e
−rt . (8.12)

This shows that the solution is obtained not just by solving the differen-
tial equation, but by also using initial conditions that are appropriate for a
particular set of circumstances.

Method 2: Separation of Variables

This method proceeds by rearranging Eq. (8.7) as

dQ

Q
= −r dt . (8.13)
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Because the dependent variable (Q) appears only on the left-hand side of
the equation, and the independent variable (t) appears only on the right-
hand side, these variables are said to have been separated and the resulting
equation can be integrated directly. Thus, with Q(0) = Q0, we have

∫ Q(t)

Q0

dQ′

Q′ = −r
∫ t

0
dt′ . (8.14)

Integrating, we obtain

ln Q′
∣∣∣∣Q(t)

Q0

= ln

[
Q(t)

Q0

]
= −rt , (8.15)

or, upon solving for Q(t),
Q(t) = Q0e

−rt , (8.16)

as above. This solution is plotted in Fig. 8.1. The characteristic exponential
decay is clearly evident. With increasing r, the rate of decay is considerably
faster because this factor appears in the argument of an exponential function.

The advantage of the trial solution method is that it can be applied
to higher-order equations, as we will show in Sec. 8.3.1, but only to linear
equations. The separation of variables method can be applied to certain
types of nonlinear equations, but only to first-order equations.

8.2.2 Spread of Epidemics

A timely example of the use of differential equations to model the spread
of epidemics, first used by Daniel Bernoulli in 1760 to model the spread of
smallpox. We will construct a simple model of an epidemic and then solve
the resulting differential equation.

Consider a population that is divided into two groups: a fraction x that
has no disease, but is susceptible, and a fraction y that can have the disease
and can infect others. We suppose that everyone belongs to one of these
groups, so x+y = 1. We now make three assumptions about how the disease
is spread:

1. The disease spreads only by direct contact between infected and unin-
fected individuals.
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2. The fraction of infected individuals increases at a rate proportional to
such contacts.

3. Both groups move freely among one another, so the number of contacts
is xy.

The differential equation that embodies these assumptions is

dy

dt
= αxy = α(1 − y)y , (8.17)

where α is a constant that specifies the “efficiency” of the spreading at the
point of contact, and we used the fact that x + y = 1. We must supplement
this equation with the fraction of infected individuals initially: y(0) = y0.

The differential equation we have derived is a first-order nonlinear equa-
tion. Thus, we cannot use the trial solution method as formulated above.
However, since the differential equation can be arranged as

dy

y(1 − y)
= αdt , (8.18)
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Figure 8.1: The solution in Eq. (8.16) plotted as Q(t)/Q0 against t for three
values of the rate constant r. With increasing r, the amount of material at time t
decreases substantially.
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we can use the separation of variables method. Integrating, we obtain

∫ y(t)

y0

dy′

y′(1 − y′)
= α

∫ t

0
dt′ . (8.19)

The left-hand side of this equation can be integrated by the method of partial
fractions:

αt =
∫ y(t)

y0

dy′

y′ +
∫ y(t)

y0

dy′

1 − y′

= ln y′
∣∣∣∣y(t)

y0

− ln(1 − y′)
∣∣∣∣y(t)

y0

= ln

[
y(t)

1 − y(t)

1 − y0

y0

]
. (8.20)

Solving for y(t) yields,

y(t) =
y0 eαt

1 − y0(1 − eαt)
. (8.21)

As t → ∞, y(t) → 1, provided that y0 �= 0 (Fig. 8.2). In other words,
all of the population eventually becomes infected unless there is no infection
initially. As long as y0 �= 0, no matter how small, the entire population
becomes infected. Accordingly, the point y = 1 is said to be stable and the
point y = 0 is said to be unstable.

8.3 Equations with Constant Coefficients

Among the simplest ordinary differential equations are linear homogeneous
equations with constant coefficients, i.e. those of the form (8.6) where the
ak(x) (k = 0, 1, . . . , n) are constants and f = 0. We illustrate the solu-
tion for such equations with an application to second-order equations. The
generalization to higher-order equations is straightforward.
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Figure 8.2: The solution in Eq. (8.21) shown as a function of αt for values of y0 in
the range 10−4 ≤ y0 ≤ 1

2 . As y0 decreases toward zero, the solution remains near
y = 0 for longer times, while as y0 increases toward unity, the solution approaches
y = 1 for shorter times.

8.3.1 The Characteristic Equation

The most general second-order linear homogeneous ordinary differential equa-
tion with constant coefficients is

a
d2y

dx2
+ b

dy

dx
+ c y = 0 , (8.22)

where a, b and c are known real constants. The recursive property of deriva-
tives of the exponential function,

dn

dxn
(emx) = mnemx (8.23)

suggests that the trial solution method used for solving first-order equations
above can be applied to higher-order equations. Suppose we try this for
Eq. (8.22). We substitute our trial solution emx into this equation and choose
m by requiring that the resulting expression to equal zero, i.e. that this
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function solves the equation. Upon taking the required derivatives, we obtain

a
d2

dx2
(emx) + b

d

dx
(emx) + c (emx) = (am2 + bm + c) emx . (8.24)

For the function emx to be a solution of (8.22), the coefficient of emx on the
right-hand side of this equation must vanish (since the exponential is nonzero
for finite x). Thus, m must be chosen to be a root of the quadratic equation

am2 + bm + c = 0 . (8.25)

This is the characteristic equation of the differential equation (8.22) and the
left-hand side of this equation is called the characteristic polynomial. The roots
of the characteristic equation, which are given by the quadratic formula,

m = − b

2a
± 1

2a

√
b2 − 4ac , (8.26)

yield solutions of (8.22). By their appearance in the discriminant in this
equation, the coefficients a, b and c are seen to be the central quantities for
determining the number and type of roots of the characteristic polynomial
and, through these roots, the behavior of the exponential solutions. There
are three cases to consider.

8.3.2 Case I: Real Distinct Roots

If b2−4ac > 0, there are two distinct real roots of the characteristic equation,
which we denote by m1 and m2. There result two distinct solutions of (8.22):

y1(x) = em1x, y2(x) = em2x , (8.27)

so the most general solution of the differential equation is obtained by taken
an arbitrary linear combination of these solutions:

y(x) = Aem1x + Bem2x , (8.28)
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where A and B are arbitrary constants. This is called the general solution of
the differential equation. The constants A and B are determined by specify-
ing initial conditions. Depending on the signs of m1 and m2, these solutions
exhibit either exponential growth or exponential decay.

8.3.3 Case II: Degenerate Roots

If b2 − 4ac = 0, there is only a single real root, m1 = b/(2a), of the charac-
teristic equation. Thus, this method produces only one solution of (8.22):

y1(x) = em1x . (8.29)

To obtain a second solution y2, we return to (8.24). If we set m = m1,
then the right-hand side of this equation vanishes, which shows that em1x

is a solution. But suppose we differentiate both sides of this equation with
respect to m before setting m equal to m1. Since the order of derivatives
with respect to x and to m is immaterial, we obtain

a
d2

dx2
(x emx) + b

d

dx
(x emx) + c (x emx)

= (2am + b) emx + (am2 + bm + c)x emx . (8.30)

By setting m = m1, both terms on the right-hand side of this equation vanish,
leaving

a
d2

dx2
(x em1x) + b

d

dx
(x em1x) + c (x em1x) = 0 , (8.31)

which shows that our second solution is, in this case,

y2(x) = x em1x . (8.32)

The general solution is

y(x) = (A + Bx)em1x . (8.33)

Similar to those in (8.27), the solutions in (8.29) and (8.32) exhibit either
exponential growth or decay, depending on the sign of m1.
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8.3.4 Case III: Complex Conjugate Roots

If b2 − 4ac < 0, there are two complex roots, m1 and m2, which are complex
conjugates: m2 = m∗

1. The two solutions of (8.22) are thus given by

y1(x) = em1x, y2(x) = em∗
1x , (8.34)

so the general solution is

y(x) = Aem1x + Bem2x . (8.35)

Since m1 and m2 are complex numbers, y1 and y2 are complex-valued func-
tions. However, we can express the solutions to (8.22) solely in terms of real
functions by utilizing by utilizing Theorem 1.1. With m1 and m2 expressed
in terms of their real and imaginary parts as

m1 = α + iβ, m2 = α − iβ , (8.36)

where α and β are real, we first write the solutions in (8.34) as

y1(x) = e(α+iβ)x = eαx(cos βx + i sin βx) , (8.37)

y2(x) = e(α−iβ)x = eαx(cos βx − i sin βx) . (8.38)

Thus, by taking appropriate linear combinations of y1 and y2, we obtain two
real solutions ỹ1 and ỹ2 of (8.22):

ỹ1(x) = eαx cos βx ỹ2(x) = eαx sin βx , (8.39)

and the general solution becomes

y(x) = Aeαx cos βx + Beαx sin βx . (8.40)

These solutions show that the imaginary parts of m1 and m2 produce oscil-
latory behavior and their real parts, if nonzero, modulate this with either
exponential growth or decay, as in (8.27), (8.29), and (8.32). The choice of
whether to use the real solutions in (8.34) or their complex counterparts in
(8.39) is largely a matter of taste and convenience.
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Example. Consider the harmonic oscillator shown in Fig. 8.3, which
consists of a mass m attached to a spring of stiffness k and damping γ.
For any displacement from equilibrium, there are two forces acting on the
spring: the gravitational force mg acting downward, and the forces of the
spring −kx and −rẋ, which always act in opposition to the motion (which
is the reason for the minus signs). Newton’s second law of motion for the
position x of the oscillator is thus given by

m
d2x

dt2
= −kx − r

dx

dt
− mg . (8.41)

We rearrange as
dx2

dt2
+ γ

dx

dt
+ ω2

0x + g = 0 , (8.42)

where

γ =
r

m
, ω2

0 =
k

m
, (8.43)

and ω0 is the natural frequency of the

m

k,r

Figure 8.3: A harmonic oscillator con-
sisting of a mass m attached to a spring
of stiffness k, together with the forces
acting on the mass.

oscillator. The constant factor g in
this equation, which originates from
the force mg due to gravity in New-
ton’s second law, can be eliminated
by shifting the position of the oscil-
lator by −mg/k, which is the equilib-
rium position of the oscillator. We will
not consider this term further, so the
equation to be solved is

dx2

dt2
+ γ

dx

dt
+ ω2

0x = 0 . (8.44)

To obtain a specific solution for the
position of the oscillator, we must sup-
plement this equation with two initial conditions. We take

x(0) = x0 ,
dx

dt

∣∣∣∣
t=0

= 0 (8.45)

Equation (8.44) has the form of Eq. (8.22), with

a = 1 , b = γ , c = ω2
0 , (8.46)
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so the solutions are determined by the solving the characteristic equation
(8.25), to obtain the roots

m = 1
2

(
−γ ±

√
γ2 − 4ω2

0

)
. (8.47)

The three cases discussed above lead to the following types of solution:

Case I. γ2 − 4ω2
0 > 0. We obtain two real roots m1 and m2 given by

m1 = 1
2

(
−γ −

√
γ2 − 4ω2

0

)
, (8.48)

m2 = 1
2

(
−γ +

√
γ2 − 4ω2

0

)
, (8.49)

and the general solution is

x(t) = Aem1t + Bem2t . (8.50)

The initial conditions in Eq. (8.45),

x(0) = A + B = x0 , x′(0) = m1A + m2B = 0 , (8.51)

yield

A =
−m2x0

m1 − m2

, B =
m1x0

m1 − m2

. (8.52)

The solution for the position of the oscillator is therefore obtained as

x(t) =
x0

m1 − m2

(
m1e

m2t − m2e
m1t

)
. (8.53)

Because this solution is dominated by the damping term γ in the discrimi-
nant, it is called over-damped (Fig. 8.4).

Case II. γ2 − 4ω2
0 = 0. We obtain a single real root m1,

m1 = −1
2
γ , (8.54)
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and the general solution is

x(t) = (A + Bt)e−
1
2
γt . (8.55)

The initial conditions in Eq. (8.45),

x(0) = A = x0 , x′(0) = B − 1
2
γ = 0 , (8.56)

yield
A = x0 , B = 1

2
x0γ . (8.57)

The solution for the position of the oscillator is therefore obtained as

x(t) = x0

(
1 + 1

2
γt

)
e−

1
2
γt . (8.58)

Because this solution is obtained by the balance of the damping term γ
with the oscillating term ω0 in the discriminant, it is called critically-damped
(Fig. 8.4).

Case III. γ2−4ω2
0 < 0. We obtain two roots m1 and m2 that are complex

conjugates, given by

m1 = 1
2

(
−γ − i

√
4ω2

0 − γ2

)
, (8.59)

m2 = 1
2

(
−γ + i

√
4ω2

0 − γ2

)
, (8.60)

and the general solution is

x(t) = Aem1t + Bem2t . (8.61)

The initial conditions in Eq. (8.45),

x(0) = A + B = x0 , x′(0) = m1A + m2B = 0 , (8.62)

yield

A =
−m2x0

m1 − m2

, B =
m1x0

m1 − m2

. (8.63)
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Figure 8.4: The three types of solution for a damped harmonic oscillator: over
damped, critically damped, and under damped.
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The solution for the position of the oscillator is therefore obtained as

x(t) =
x0

m1 − m2

(
m1e

m2t − m2e
m1t

)
. (8.64)

Because this solution is dominated by the oscillating term ω0 in the discrim-
inant, it is called under-damped (Fig. 8.4).

8.4 Inhomogeneous Equations∗

8.4.1 Method of Solution

One of the most striking manifestations of a driven system is resonance in a
system subjected to a driving force. This motivates the discussion of equa-
tions of the form

a
d2y

dx2
+ b

dy

dx
+ c y = f(t) , (8.65)

which are called inhomogeneous because the function f(t) on the right-hand
side of this equation is specified independently of the solution. Such equations
are solved by first supposing that there are two independent solutions y(1)(x)
and y(2)(x) of this equation:

a
d2y(1)

dx2
+ b

dy(1)

dx
+ c y(1) = f(t) , (8.66)

a
d2y(2)

dx2
+ b

dy(2)

dx
+ c y(2) = f(t) . (8.67)

If we subtract one equation from the other, say Eq. (8.66) from (8.67), we
obtain

a
d2[y(2) − y(1)]

dt2
+ b

d[y(2) − y(1)]

dt
+ [y(2) − y(1)] = 0 , (8.68)

i.e. the difference y(2)−y(1) is a solution of the homogeneous equation! Denote
the general solution of the homogeneous equation by Ay1(x) + By2(x), we
conclude that

y(2)(x) = Ay1(x) + By2(x) + y(1)(x) . (8.69)
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This suggests the following method of solution. Find a solution yp(x) of
the inhomogeneous equation, called a particular solution, by any means. The
general solution y(x) of the inhomogeneous equation is then given by

y(x) = Ay1(x) + By2(x) + yp(x) . (8.70)

8.4.2 Resonance in a Driven Harmonic Oscillator

To illustrate the solution of inhomogeneous equations, we consider an un-
damped harmonic oscillator driven by an external sinusoidal force:

m
d2x

dt2
+ kx = F0 cos ωt , (8.71)

where m is the mass, k is the spring constant, x is the position of the mass, t
is the time, F0 is the amplitude of the driving force with frequency ω. Upon
dividing through by m, we can write this equation as

d2x

dt2
+ ω2

0x =
F0

m
cos(ωt) , (8.72)

where ω0 = (k/m)1/2 is the natural frequency of the oscillator. From the
discussion in the preceding equation, we know that the solution of the corre-
sponding homogeneous equation (i.e. the equation obtained by setting F0 =
0), is

x(t) = A cos ω0t + B sin ω0t , (8.73)

where A and B are arbitrary constants obtained by specifying two initial
conditions (the initial position and velocity of the mass). The most general
solution of the inhomogeneous equation is the sum of the general solution
of the homogeneous and a particular solution xp(t) of the inhomogeneous
equation:

x(t) = A cos ω0t + B sin ω0t + xp(t) . (8.74)

To determine xp(t) for this equation, we attempt a solution of the form

xp(t) = C cos ωt . (8.75)
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The required derivatives are

dxp

dt
= −Cω sin ωt,

d2xp

dt2
= −Cω2 cos ωt . (8.76)

Substitution into Eq. (8.72),

−Cω2 cos ωt + Cω2
0 cos ωt =

F0

m
cos ωt , (8.77)

cancelling the common factor of cos(ωt), and solving for C, yields

xp(t) =
F0

m(ω2
0 − ω2)

cos ωt . (8.78)

Note that, as ω → ω0, the solution becomes unbounded. This is called
resonance. In the presence of damping, the solutions remain finite, but still
become large when the resonance condition is fulfilled. The damping of oscil-
lations close to resonance is an important engineering problem, as evidenced
by the famous collapse of the Tacoma Narrows Bridge and, more recently by
the re-design of the Millennium Bridge to incorporate damping.

The general solution to the inhomogeneous equation is therefore given by

x(t) = A cos ω0t + B sin ω0t +
F0

m(ω2
0 − ω2)

cos ωt . (8.79)

To solve the initial-value problem, we consider the initial condition corre-
sponding to the mass being initially at rest:

x(0) = 0,
dx

dt

∣∣∣∣
t=0

= 0 . (8.80)

Substituting these conditions into the general solution yields

x(0) = A +
F0

m(ω2
0 − ω2)

= 0 , (8.81)

so,

A = − F0

m(ω2
0 − ω2)

, (8.82)
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and
dx

dt

∣∣∣∣
t=0

= ω0B = 0 , (8.83)

which yields B = 0. Thus, the solution to the initial-value problem is

x(t) =
F0

m(ω2
0 − ω2)

(cos ωt − cos ω0t) . (8.84)

This expression can be written in a physically more transparent form by
using the trigonometric identity,

cos(A − B) − cos(A + B) = 2 sin A sin B . (8.85)

By setting A−B = ωt and A + B = ω0t and solving for A and B, we obtain

x(t) =
2F0

m(ω2
0 − ω2)

sin
[

1
2
(ω0 + ω)t

]
sin

[
1
2
(ω0 − ω)t

]
, (8.86)

which represents the solution as a frequency-dependent amplitude and two
sinusoidal factors.

In the Fig. 8.5, we plot the quantity X(t) = mx(t)/2F0 for ω0 = 1 and
ω = 0.9. The solution is oscillatory, as expected, but the most striking feature
of this plot is the phenomenon of “beats”, resulting from the superposition of
a high-frequency oscillation, sin[1

2
(ω0 + ω)t], and a lower frequency envelope,

sin[1
2
(ω0 − ω)t].

8.5 Summary

We can both summarize and generalize the main results of this chapter as
follows. The solution of any nth-order ordinary differential Equation (8.5),

F
[
x, y, y′, . . . , y(n)

]
= 0

depends, in general, on n arbitrary constants c1, c2, . . . , cn:

y = ϕ(x; c1, c2, . . . , cn) (8.87)
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Figure 8.5: The quantity X(t) = mx(t)/2F0, where x(t) is the solution in
Eq. (8.86), for a undamped harmonic oscillator with a natural frequency ω0 = 1
driven by a sinusoidal force with a frequency ω = 0.9.

Thus, to obtain a unique solution for a particular problem, it is necessary to
supplement the differential equation with auxiliary conditions. A common
choice is for these constants to be determined from the initial values of the
solution y and its first n − 1 derivatives at some initial point x0:

y(x0) = A0, y′(x0) = A1, . . . y(n)(x0) = An−1

The expression in (8.87) is a general solution if it possible to satisfy these
initial conditions for arbitrary values of the yi with an appropriate choice of
the cj. This usually requires the solution of a system of algebraic equations.

For homogeneous linear nth-order equations,

an(x)
dny

dxn
+ · · · + a1(x)

dy

dx
+ a0(x)y(x) = 0

the general solution can be formed from any n linearly independent solutions
y1, y2, . . . , yn of this equation:

y = c1y1 + c2y2 + · · · + cnyn

The determination of the cj from the initial conditions now reduces to the
solution of a system of n linear algebraic equations.


