
Chapter 7

The Curl and Stokes’ Theorem

The divergence of a vector field is a derivative operation that yields the flux
density of that field as a function of position. Another quantity used to
characterize a vector field is called the curl or, sometimes the rotation. The
curl is obtained by taking a derivative, and is associated with the circulation
density of the vector field, so there is a Fundamental Theorem of Calculus for
the curl , called Stokes’ theorem. In this chapter we develop these concepts
by following similar steps to those used in the preceding chapter for the
divergence: the definition in terms of infinitesimal quantities is followed by
integration of this quantity over a region to obtain the fundamental theorem.

The divergence and curl provide complementary information about a vec-
tor field. In fact, a theorem due to Helmholtz states that a vector field that
vanishes at infinity is uniquely defined by its curl and divergence. Maxwell’s
equations, the fundamental equations of electromagnetism, utilize this theo-
rem by specifying the divergence and curl of the electric and magnetic fields.

7.1 The Curl in Two Dimensions

The basic construction used to derive the curl in two dimensions is shown in
Fig. 7.1 for a vector field V given by

V = P (x, y) i + Q(x, y) j . (7.1)
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Figure 7.1: The region of area ∆x∆y used to calculated the curl of a vector field.
The projections of the components of the vector field onto the directions around
this region are indicated by arrows.

We consider a rectangular region of area ∆x∆y and calculate the line integral
around its perimeter, which is denoted by ∂(∆A),∮

∂(∆A)
V · dr =

∮
∂(∆A)

(P dx + Q dy) (7.2)

in the counterclockwise direction. The integrand of this line integral repre-
sents the projection of V along the integration path, so a positive (resp.,
negative) value of the integral implies that V a positive (resp., negative)
circulation. The direction of positive circulation is simply a matter of con-
vention. If the line integral vanishes, V has no circulation in the region.

The line integral in Eq. (7.2) is composed of four segments:∮
∂(∆A)

(P dx + Q dy) =
∫ x+∆x

x
P (x′, y) dx′ +

∫ y+∆y

y
Q(x + ∆x, y′) dy′

+
∫ x

x+∆x
P (x′, y + ∆y) dx′ +

∫ y

y+∆y
Q(x, y′) dy′ (7.3)

By using Eq. (1.30),

∫ b

a
f(x) dx = −

∫ a

b
f(x)) dx , (7.4)
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we can combine terms on the right-hand side of Eq. (7.3) to obtain∮
∂(∆A)

(P dx + Q dy) =
∫ x+∆x

x
[P (x′, y) − P (x′, y + ∆y)] dx′

+
∫ y+∆y

y
[Q(x + ∆x, y′) − Q(x, y′)] dy′ . (7.5)

Since the limits ∆x → and ∆y → 0 are to be taken, we can regard P and Q
as constant over their intervals of integration. Our line integral then becomes∮

∂(∆A)
(P dx + Q dy) = [P (x, y) − P (x, y + ∆y)] ∆x

+ [Q(x + ∆x, y) − Q(x, y)] ∆y . (7.6)

We now divide both sides of this equation by ∆x∆y,

1

∆x∆y

∮
∂(∆A)

(P dx + Q dy) =
P (x, y) − P (x, y + ∆y)

∆y

+
Q(x + ∆x, y) − Q(x, y)

∆x
, (7.7)

and take the limits ∆x → and ∆y → 0. The right-hand side can be evaluated
by using the definitions in Eqs. (1.12) and (1.13):

lim
∆y→0

[
P (x, y) − P (x, y + ∆y)

∆y

]
= −∂P

∂y
, (7.8)

lim
∆x→0

[
Q(x + ∆x, y) − Q(x, y)

∆x

]
=

∂Q

∂x
. (7.9)

Thus, we obtain

lim
∆x→0,∆y→0

[
1

∆x∆y

∮
∂(∆A)

(P dx + Q dy)

]
=

∂Q

∂x
− ∂P

∂y
. (7.10)

This is the definition of the curl. It represents the circulation of a vector
field around an infinitesimal area at (x, y). Notice that in deriving this quan-
tity, we have used only the components along dr, whereas the corresponding
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derivation of the divergence in Sec. 6.1 used the normal components. This
provides a intuitive basis for understanding why the divergence and curl
uniquely specify a vector field.

Example. We calculate the curls of

x

y

Figure 7.2: Plot of V = x i + y j.

the vector fields in the examples in Sec. 6.1.
Consider

V = x i + y j , (7.11)

which is shown in Fig. 7.2. This is a ra-
dial vector field with a divergence that
was calculated as ∇ · V = 2. To calcu-
late the curl of this vector field, we apply
the definition in Eq. (7.10) with P = x
and Q = y to obtain

∂y

∂x
− ∂x

∂y
= 0 − 0 = 0 . (7.12)

Thus, V is specified completely by its divergence. These conclusions are
valid for any radial vector field (Problem Set 9).

Now consider the vector field

x

y

Figure 7.3: Plot of V = x i − y j.

V = x i − y j , (7.13)

which is shown in Fig. 7.3. This vector
field was found in Sec. 6.1 to have a di-
vergence that vanishes: ∇ ·V = 0. With
P = x and Q = −y, the curl of V is

∂(−y)

∂x
+

∂x

∂y
= 0 + 0 = 0 , (7.14)

which is also zero! Thus, both the di-
vergence and curl vanish for this vector
field. This example shows that, even if
the curl and divergence of a vector field are both zero, the vector field itself
need not reduce to a constant everywhere. However, if we further stipulate
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further that a vector field must vanish at infinity, then a vanishing divergence
and curl do indeed imply that that V = 0. This discussion has important
implications for the governing equations of electric and magnetic fields in
electromagnetism (Maxwell’s equations).

Finally, consider

x

y

Figure 7.4: Plot of V = −y i + x j.

V = −y i + x j , (7.15)

which is shown in Fig. 6.4. With P =
−y and Q = x, the curl is calculated
as

∂x

∂x
− ∂(−y)

∂y
= 1 + 1 = 2 . (7.16)

so this vector field has a positive cir-
culation according to our convention.
Indeed, the plot of the vector field in
Fig. 7.4 is suggestive of a circulation
around the origin. But, as in the dis-
cussion in Sec. 6.1, the fact that the curls of the vector fields in this example
are constants, means that any interpretation assigned to them must be valid
for every point in the x-y plane. This point is taken up in Problem Set 9.

7.2 Green’s Theorem

The curl was obtained by considering the circulation around an infinitesimal
region in the x-y plane. We can integrate Eq. (7.10) to obtain the “Funda-
mental Theorem of Calculus” associated with the curl in a manner analogous
to that for the divergence. The key point again is that for adjacent elemen-
tal regions the share a boundary, the integral along one boundary exactly
cancels the corresponding integral around the adjacent region because the
sense of integration is opposite on these faces (Figs. 7.5). Thus, the only net
contribution to the curl is where there is no adjacent region.

We begin by rearranging (7.10) as∮
∂(∆A)

(P dx + Q dy) =

(
∂Q

∂x
− ∂P

∂y

)
∆A . (7.17)
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Figure 7.5: (a) Partition of a region in the x-y plane bounded by a curve. (b)
Cancellation of line integrals over adjacent regions. (c) As the area of the basic
regions becomes smaller (∆x → 0 and ∆y → 0), the partitioning in (a) provides a
successively more accurate representation of the region, yielding a more accurate
representation of the curve surrounding the region.

The left-hand side of this equation is the line integral over the perimeter of
the region ∆A and the right-hand side is the circulation density (i.e. the curl)
multiplied by the area ∆A of the region, which yields the total circulation
within the region. Now, any region in the x-y plane can be partitioned into
such contiguous elemental rectangular regions, as shown in Fig. 7.5(a). For
each such region we can carry out the indicated calculations in Eq. (7.17).
Thus, the corresponding quantities calculated for the entire region A is ob-
tained by summing over the elemental regions:

∑
i

∮
∂(∆Ai)

(P dx + Q dy) =
∑

i

(
∂Q

∂x
− ∂P

∂y

)
∆Ai , (7.18)

where ∆Ai is the area of the ith elemental region. This is depicted in
Fig. 7.5(b). For extended regions ∆A, the partitioning does not give an
accurate representation of either interior or the boundary, but improves as
∆A decreases. Thus, by taking ∆A → 0, we can obtain an exact relation
between the line integral over the perimeter of the region and the curl within
the region.

We consider the left-hand side of Eq. (7.18) first. As Figs. 7.5(b,c) show,
the sum of the line integrals over the elemental rectangular regions contains
only those segments that have no neighboring elemental regions; the interior
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line integrals cancel pairwise. Thus,

lim
∆Ai→0

[∑
i

∮
∂(∆Ai)

(P dx + Q dy)

]
=

∮
∂A

(P dx + Q dy) , (7.19)

where ∂A is the perimeter of the region A in the x-y plane and the integral
is taken in the counter-clockwise direction.

The right-hand side of Eq. (7.18) is two-dimensional Riemann sum (cf. Eq. 1.16).
In particular, as ∆ → 0, the summation becomes an integral over the interior
of the region A:

lim
∆Ai→0

[∑
i

(
∂Q

∂x
− ∂P

∂y

)
∆Ai

]
=

∫∫
A

(
∂Q

∂x
− ∂P

∂y

)
dA . (7.20)

Thus, the results in Eqs. (7.19) and (7.20) show that the limiting form of
Eq. (7.18) obtained as ∆Ai → 0 is

∮
∂A

(P dx + Q dy) =
∫∫

A

(
∂Q

∂x
− ∂P

∂y

)
dx dy , (7.21)

which is known as Green’s theorem. This equation has the structure of the
Fundamental Theorem of Calculus in that the integral of a derivative of a
quantity (the curl) over the interior of a region is equal to that quantity
evaluated on the boundary of the region.

Example. Consider the vector field

V = −y i + x j , (7.22)

which is shown in Fig. 6.4, and suppose that the area in the x-y plane is a
circle of radius R. With P = −y and Q = x, the left-hand side of Eq. (7.21)
is ∮

∂A
(P dx + Q dy) =

∮
∂A

(x dy − y dx) . (7.23)

In circular polar coordinates, x = R cos φ, y = R sin φ, where 0 ≤ φ < 2π,
and

dx = −R sin φ dφ , dy = R cos φ dφ , (7.24)
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so the integral becomes∮
∂A

(x dy − y dx) =
∫ 2π

0
(R2 cos2 φ + R2 sin2) dφ

= R2
∫ 2π

0
dφ = 2πR2 . (7.25)

To evaluate the right-hand side of Eq. (7.21), we have that the curl is

∂Q

∂x
− ∂P

∂y
= 1 − (−1) = 2 , (7.26)

so, again using polar coordinates,∫∫
A

(
∂Q

∂x
− ∂P

∂y

)
dx dy = 2

∫ R

0
r dr

∫ 2π

0
dφ

= 2 × 1

2
R2 × 2π = 2πR2 , (7.27)

which agrees with Eq. (7.25).

Example. Consider the vector field

V = x i + y j , (7.28)

which is shown in Fig. 7.2. With P = x and Q = y, the left-hand side of
Eq. (7.21) is ∮

∂A
(P dx + Q dy) =

∮
∂A

(x dx + y dy) . (7.29)

Since the curl of V vanishes,

∂Q

∂x
− ∂P

∂y
= 0 − 0 = 0 . (7.30)

Thus, according to Green’s theorem,∮
∂A

(x dx + y dy) = 0 (7.31)

for any area A! This ostensibly surprising result is, in fact, to be expected
from the discussion in Sec. 4.2, where we showed that the value of a line
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integral is independent of the path if and only if the integral over any closed
curve vanishes. Indeed, we showed in Sec. 4.3 that the condition for the value
of a line integral, ∮

∂A
(P dx + Q dy) (7.32)

to be independent of the path is

∂P

∂y
=

∂Q

∂x
, (7.33)

i.e. the vanishing curl of the vector field V = P i+Q j. The three-dimensional
generalization of this result will be derived in the next section.

7.3 Stokes’ Theorem

Green’s theorem establishes a relationship between the curl of a two-dimen-
sional vector field and line integrals of that vector field in the x-y plane. The
motivation for the mathematical structure of line integrals in terms of the
work done by a force field along a path (Sec. 4.1) suggests that line integrals
in three dimensions might also benefit from the analysis in Secs. 7.1 and
7.2. In this section, we generalize Green’s theorem to three dimensions by
examining at each side of Eq. (7.21) separately.

7.3.1 Line Integrals in Three Dimensions

Consider a three-dimensional vector field V given by

V = P (x, y, z) i + Q(x, y, z) j + R(x, y, z) k . (7.34)

The work done along a three-dimensional path P is obtained by calculating
the component of V projected along the direction of the path. With the
position vector given by r = x i + y j + z k, we have∫

P
V · dr =

∫
P
(P dx + Q dy + R dz) . (7.35)

This is the generalization of the left-hand side of Eq. (7.21) to three dimen-
sions.
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7.3.2 The Curl Vector

The curl derived in Sec. 7.1 is en-

Figure 7.6: The curl vector according
to the right-hand rule.

dowed with a sign in that the counter-
clockwise direction of the circulation is
taken as positive by convention. But
when this construction is extended to
three dimensions, the concept of “clock-
wise” versus “counterclockwise” is not
precise enough to identify the direction
of circulation. For example, the coun-
terclockwise direction observed by look-
ing down onto the x-y plane from the
positive z-axis appears as the clockwise
direction when looking up to the x-y
plane from the negative z-axis. This
ambiguity can be alleviated by using the “right-hand rule” to assign an ori-
entation to positive (i.e. counterclockwise) circulation: when the fingers of
your right hand bend in the counterclockwise direction, your thumb points
in the direction of the positive z-axis. Thus, we can write the curl of a vector
V = P i + Q j as (

∂Q

∂x
− ∂P

∂y

)
k . (7.36)

We can represent this expression in a more suggestive form by utilizing the
definition of the “del” operation,

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
, (7.37)

to represent the curl of a vector as the “cross” product between this operation
and V . The calculation of this quantity proceeds in direct analogy with the
representation of the cross product of two ordinary vectors as a determinant:

∇ × V =

∣∣∣∣∣∣∣∣
i j k

∂x ∂y 0

P Q 0

∣∣∣∣∣∣∣∣ =

(
∂Q

∂x
− ∂P

∂y

)
k , (7.38)
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which is the same as Eq. (7.53). To convert this to a scalar quantity, we take
the “dot” product of this quantity with k:

(∇ × V ) · k =
∂Q

∂x
− ∂P

∂y
. (7.39)

Thus, combining Eqs. (7.35) and (7.39) Green’s theorem can be written as

∮
∂A

V · dr =
∫∫

A
(∇ × V ) · k dx dy . (7.40)

7.3.3 The Curl of Three-Dimensional Vector Fields

The general vector field V is given by Eq. (7.34). The construction in
Eq. (7.39) yield the following expression for the curl:

∇×V =

∣∣∣∣∣∣∣∣
i j k

∂x ∂y ∂z

P Q R

∣∣∣∣∣∣∣∣
=

(
∂R

∂y
− ∂Q

∂z

)
i +

(
∂P

∂z
− ∂R

∂x

)
j +

(
∂Q

∂x
− ∂P

∂y

)
k . (7.41)

The meaning of this vector field follows from that for the two-dimensional
curl: it represents the circulation density, with a direction given by the right-
hand rule.

Example. The curl of the vector field

V = z i + x j + y k , (7.42)

is

∇×V =

∣∣∣∣∣∣∣∣
i j k

∂x ∂y ∂z

z x y

∣∣∣∣∣∣∣∣ = i + j + k . (7.43)
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The vector components of the curl of V each have unit circulation in di-
rections given by the right-hand rule, so the total circulation is along the
direction i + j + k.

The right-hand side of Eq. (7.21) can now be expressed in terms of the
local unit normal n to the surface σ as∫

A
(∇ × V ) · k dx dy −→

∫∫
(∇ × V ) · n dσ . (7.44)

We thus arrive at Stokes’ theorem:

∮
∂σ

V · dr =
∫∫

σ
(∇ × V ) · n dσ , (7.45)

where ∂σ is the bounding curve of the surface σ. An important consequence
of the structure of this equation is that, given a vector field V , the left-hand
side is determined completely by the bounding curve, independent of the
surface σ. To appreciate the significance of this, consider the three surfaces
shown in Fig. 7.7. Each surface has the same bounding curve, namely, the
unit circle in the x-y plane. The left-hand side of Stokes’ theorem and, there-
fore, the right-hand side, is the same for all three surfaces! This highlights
the fact that Stokes’ theorem is a “fundamental theorem of calculus” for the
curl in that the evaluation of the right-hand side of Eq. (7.45) is determined
entirely by the nature of the boundary ∂σ.

Example. Consider the surface σ given by the surface of the upper
half-sphere of radius R:

σ: x2 + y2 + z2 = R2 , (z ≥ 0) . (7.46)

The bounding curve is therefore given by the circle of radius R in the x-y
plane:

∂σ: x2 + y2 = R2 . (7.47)

These quantities are shown Fig. 7.7(a). We will evaluate both side Stokes’
theorem in Eq. (7.45) for the vector field

V = −y i + x j + z k . (7.48)
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Figure 7.7: Three surfaces that have the same bounding curve in the x-y plane,
which is shown emboldened: (a) an upper half-sphere, (b) a cylinder, and (c) a
cone. For each of these surfaces and for a given vector field, the left-hand side of
Stokes’ theorem in Eq. (7.45) is identical.

We consider the left-hand side of Eq. (7.45) first. We have

V · dr = (−y i + x j + z k) · (dx i + dy j + dz k)

= −y dx + x dy + z dz . (7.49)

On ∂σ, which lies in the x-y plane, where z = 0, this expression reduces to

V · dr

∣∣∣∣
∂σ

= −y dx + x dy . (7.50)

In circular polar coordinates, x = R cos φ, y = R sin φ, where 0 ≤ φ < 2π,
we have

dx = −R sin φ dφ , dy = R cos φ dφ , (7.51)

from which we obtain

V · dr

∣∣∣∣
∂σ

= −y dx + x dy = R2 sin2 φ dφ + R2 cos2 φ dφ = R2 dφ . (7.52)

Thus, the left-hand side of Stokes’ theorem evaluates to

∮
∂σ

V · dr =
∫ 2π

0
R2 dφ = 2πR2 . (7.53)
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To evaluate the right-hand side of Stokes’ theorem, we first calculate the
curl of V :

∇×V =

∣∣∣∣∣∣∣∣
i j k

∂x ∂y ∂z

−y x z

∣∣∣∣∣∣∣∣ = (1 + 1)k = 2 k . (7.54)

The unit normal is given in Eq. (6.43):

n =
x

R
i +

y

R
j +

z

R
k . (7.55)

Thus,

(∇×V ) · n = 2 k ·
(

x

R
i +

y

R
j +

z

R
k

)
=

2z

R
. (7.56)

We will evaluate the integral of this quantity over the upper half-sphere in
spherical polar coordinates:∫

σ
(∇ × V ) · n dσ = R2

∫ 2π

0

∫ 1
2
π

0
sin θ

(
2

R
R cos θ

)
dθ

= 4πR2
∫ 1

2
π

0
sin θ cos θ dθ︸ ︷︷ ︸

1
2
sin2 θ

∣∣∣∣ 1
2
π

0
= 1

2

= 2πR2 . (7.57)

which agrees with Eq. (7.53).

Example. Consider the surface σ given by a cylinder of radius R and
height H:

σ: x2 + y2 = R2 , (0 ≤ z ≤ H) . (7.58)

The bounding curve is again the circle of radius R in the x-y plane:

∂σ: x2 + y2 = R2 . (7.59)

These quantities are shown Fig. 7.7(b). We again have the vector field

V = −y i + x j + z k . (7.60)
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Since the bounding curve and the vector field are the same as in the preceding
example, the evaluation of the left-hand side of Stokes’ theorem again yields
the value 2πR2. To evaluate the right-hand side of Stokes’ theorem, we again
have that ∇×V = 2 k. The unit normal to the top of the cylinder n = k,
so for this part of the surface integral we have

(∇×V ) · n = 2 . (7.61)

The integral of this quantity over the top of the cylinder is∫
σ
(∇ × V ) · n dσ = 2

∫ R

0
r dr

∫ 2π

0
dφ = 2πR2 . (7.62)

For the integral over the sides of the cylinder, we have that the unit normal
is

n =
x

R
i +

y

R
j , (7.63)

and, therefore, we find that

(∇×V ) · n = 2 k ·
(

x

R
i +

y

R
j
)

= 0 . (7.64)

Thus, the integral over the sides of the cylinder vanishes and the total integral
over the surface of the cylinder is given by the integral over the top of the
cylinder, which is independent of the height of the cylinder, and equal to
2πR2.

7.4 Summary

This chapter has introduced the curl of a vector field V = V = P (x, y, z) i+
Q(x, y, z) j + R(x, y, z) k:

∇×V =

∣∣∣∣∣∣∣∣
i j k

∂x ∂y ∂z

P Q R

∣∣∣∣∣∣∣∣
=

(
∂R

∂y
− ∂Q

∂z

)
i +

(
∂P

∂z
− ∂R

∂x

)
j +

(
∂Q

∂x
− ∂P

∂y

)
k . (7.65)
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The curl represents the circulation density of the vector field and, because of
the derivative operation, has an associated Fundamental Theorem of Calculus
called Stokes’ theorem theorem:∮

∂σ
V · dr =

∫∫
σ
(∇ × V ) · n dσ , (7.66)

for a surface σ with a bounding curve ∂σ.


