
Chapter 6

The Divergence and the
Divergence Theorem

There are two basic types of function that describe physical quantities in
higher spatial dimensions: scalar functions of several variables and vector
fields. Scalar functions assign a number to every point in a given region,
while vector fields assign a vector, i.e. a magnitude and direction, to every
point in a region. For example, temperature is a scalar function, but the
wind direction and speed on a weather map is an example of a vector field.

In the preceding chapter, we showed that the gradient of a scalar func-
tion is a vector field that characterizes the magnitude and direction of the
maximum rate of change of that function. By their very nature, vector fields
are more difficult to represent and visualize than scalar functions, so opera-
tions that characterize properties of vector fields are especially useful. In this
chapter, we introduce the “divergence” of a vector field, a suggestively named
quantity that quantifies the extent to which the vector field points toward or
away (i.e. diverges) from a point. The divergence is central quantity in the
mathematical formulations of continuum theories such as electromagnetism,
fluid mechanics, and elasticity.

6.1 Definition of the Divergence

We will work initially in two spatial dimensions; the results obtained can be
taken over to three dimensions with minimal procedural changes. Consider
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Figure 6.1: The region of area ∆x∆y used to calculated the divergence of a vector
field that crosses the boundary of that region. The outward unit normal of each
face of this region is also indicated.

the construction in Fig. 6.1, which shows a rectangular region in the x-y
plane of area ∆x∆y. A vector field that crosses the boundary of this region
is also indicated. We now ask the question: what is the flux of the vector field
across that region? The flux of a vector field across a boundary is defined as
the part of the vector field that is normal to that surface. The component
of the vector parallel to the boundary does not contribute to the flux across
the boundary. If we denote this vector field by

V = P (x, y) i + Q(x, y) j , (6.1)

and the outward unit normal of the surface by n, the total flux across the
boundary of the region can be expressed as a line integral of the “dot” product
V · n over the boundary: ∫

V · n ds . (6.2)

Note the sign convention used here: positive for flux out of the region and
negative for flux into the region. We can now calculate the contribution to
this quantity from each of the four sides of the rectangular region. Beginning
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with the part of the boundary contained between (x, y) and (x + ∆x, y) and
moving counterclockwise, we obtain the following expressions:

(V · n)∆x = [P (x, y) i + Q(x, y) j] · (−j) ∆x

= −Q(x, y)∆x , (6.3)

(V · n)∆y = [P (x + ∆x, y) i + Q(x + ∆x, y) j] · i ∆y

= P (x + ∆x, y)∆y , (6.4)

(V · n)∆x = [P (x, y + ∆y) i + Q(x, y + ∆y) j] · j ∆x

= Q(x, y + ∆y)∆x . (6.5)

(V · n)∆y = [P (x, y) i + Q(x, y) j] · (−i) ∆y

= −P (x, y)∆y , (6.6)

where the signs are due to the directions of the unit normals of each face,
which are −j, i, j and −i, respectively. Note the arguments of P and Q
in each term! The variation along each face has been neglected because the
lengths of each side will become infinitesimal later in this calculation. More-
over, the reference points for each side have been chosen so that the leading
corrections to V (x, y) are of order ∆x∆y, rather than (∆x)2 or (∆y)2, which
would vanish in the infinitesimal limit. Neither of these choices is essential
for our calculation, but they make the intermediate step much simpler.

Upon summing up the contributions to the flux, we obtain∫
V · n ds = [P (x + ∆x, y) − P (x, y)] ∆y + [Q(x, y + ∆y) − Q(x, y)] ∆x

=

[
P (x + ∆x, y) − P (x, y)

∆x
+

Q(x, y + ∆y) − Q(x, y)

∆y

]
∆x∆y .

(6.7)

The expressions within the square brackets on the right-hand side are discrete
approximations to partial derivatives of P and Q, as given in Eqs. (1.12) and



86 The Divergence and the Divergence Theorem

(1.13). Thus, by dividing both sides of this equation by ∆x∆y and taking
the limit ∆x → 0 and ∆y → 0, we obtain

lim
∆x→0,∆y→0

[
1

∆x∆y

∫
V · n ds

]

= lim
∆x→0

[
P (x + ∆x, y) − P (x, y)

∆x

]
+ lim

∆y→0

[
Q(x, y + ∆y) − Q(x, y)

∆y

]

=
∂P

∂x
+

∂Q

∂y
. (6.8)

The quantity on the right-hand side of this equation is called the divergence
of V . From the way we have arrived at this quantity, the divergence is
defined as the flux density across the boundary of an infinitesimal region.

This point merits further discussion. We are familiar with other types
of densities, such as mass density and charge density. Each of these refers
to an extensive quantity in that the total amount of mass or charge within
a region is obtained by integrating the corresponding density at each point
within the region. The density at any point can be determined by calculating
the volume within a region surrounding the point, dividing by the volume
of the region, and shrinking the volume of the region to that point. Flux is
another such quantity, as the Eq. (6.8) demonstrates. This is of fundamental
significance for the applications of the divergence to physical theories.

We can write the divergence of a vector field in a more compact form
that has a natural extension to three dimensions by introducing the “del”
operation

∇ ≡ i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
. (6.9)

By regarding this operation as a “vector”, we take the “dot” product with

V = P (x, y, z) i + Q(x, y, z) j + R(x, y, z) k , (6.10)

to obtain

∇ · V =

(
i

∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)
· (P i + Q j + R k) =

∂P

∂x
+

∂Q

∂y
+

∂R

∂z
.

(6.11)



The Divergence and the Divergence Theorem 87

The definition of the divergence in Eq. (6.8) can now be written as

∇ · V = lim
∆A→0

(
1

∆A

∫
V · n ds

)
, (6.12)

where we have written ∆A = ∆x∆y. This definition has several similarities
with the definition of the derivative in Eq. (1.1). We used Eq. (1.1) explicitly
in arriving at the expression for the divergence, but the similarities run much
deeper. The right-hand sides of both equations are expressed in terms of a
function evaluated on the boundary of a region [the end-points of an interval
in the definition in Eq. (1.1)], and the corresponding derivatives of those
functions are obtained by shrinking this region to zero. These similarities will
be extended further when we derive the Fundamental Theorem associated
with the divergence. We first consider some examples of vector fields and
their divergences.

Example. As our first example,

x

y

Figure 6.2: Plot of V = x i + y j.

we consider the vector field

V = x i + y j , (6.13)

which is shown in a region around the
origin in Fig. 6.2 at right. The diver-
gence of V is calculated from the def-
inition in Eq. (6.11), with P = x and
Q = y:

∇ · V =
∂x

∂x
+

∂y

∂y

= 1 + 1 = 2 . (6.14)

According to our convention, the pos-
itive divergence of this vector field indicates that the flux density is directed
outward. This is certainly apparent at the origin, but the fact that the di-
vergence is independent of position means that this interpretation is valid for
every point in the x-y plane, i.e. the flux density is directed outward from
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every point. Understanding how this conclusion is drawn is central to the
concept of what the divergence means. The details of this interpretation is
discussed in Classwork 7 for this and other vector fields.

Example. Consider now the vec-

x

y

Figure 6.3: Plot of V = x i − y j.

tor field

V = x i − y j , (6.15)

which is shown in Fig. 6.3 at right.
The divergence of V is calculated from
Eq. (6.11), with P = x and Q = −y:

∇ · V =
∂x

∂x
− ∂y

∂y

= 1 − 1 = 0 . (6.16)

This zero divergence indicates that there
is no net flux density. This is again apparent at the origin, but the fact that
the divergence is independent of position means that this interpretation is
valid for any point in the x-y plane.

Example. Our final example is

x

y

Figure 6.4: Plot of V = −y i + x j.

the vector field

V = −y i + x j , (6.17)

which is shown in Fig. 6.4 at right.
The divergence of V is calculated from
Eq. (6.11), with P = −y and Q = x:

∇ · V = −∂y

∂x
+

∂x

∂y

= 0 + 0 = 0 . (6.18)

The vanishing divergence of this vec-
tor field indicates that there is no net
flux density, but here because the vector appears as a “vortex”. As in the
preceding examples, this conclusion is valid at every point.
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6.2 The Divergence Theorem

The divergence was derived in the

Figure 6.5: Adjacent regions showing
that, where there is a common bound-
ary, indicated by bold lines, the flux
from one region exactly cancels the flux
into the adjacent region. Only un-
shared boundaries contribute to the net
flux.

preceding section by calculating the
flux through an infinitesimal region in
the x-y plane. In this section, we will
integrate Eq. (6.8) to obtain the “fun-
damental theorem of calculus” asso-
ciated with the divergence. The key
point here is that for adjacent regions
the share a boundary, the flux from
one region exactly cancels the flux into
the next region. The only net contri-
bution to the flux is where there is no
adjacent region, as shown in Fig. 6.5.
Thus, we can partition any region in
the x-y plane into contiguous regions
of the type in Figs. 6.1 and invoke
the cancellation of flux along adjacent
boundaries (Fig. 6.5). The sequence
of steps is shown in Fig. 6.6. If we de-
note the boundary of the ith region by ∆σi and the area ∆x∆y by ∆τi, then
for each region we have

∫
∆σi

V · ni ds =

(
∂P

∂x
+

∂Q

∂y

)
∆τi . (6.19)

where ni represents the outward normal of the ith region. Then, summing
over each region yields

∑
i

∫
∆σi

V · ni ds =
∑

i

(
∂P

∂x
+

∂Q

∂y

)
∆τi . (6.20)

By taking the limit ∆x → 0 and ∆y → 0, we obtain

lim
∆x→0,∆y→0

[∑
i

∫
∆σi

V · ni ds

]
=

∫
σ
V · n ds ≡

∫
V · n dσ , (6.21)
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Figure 6.6: (a) Partition of a region in the x-y plane bounded by a curve. (b)
Cancellation of integrals over adjacent regions, as shown in Fig. 6.5. (c) As the
area of the basic regions becomes smaller (∆x → 0 and ∆y → 0), the partitioning
in (a) provides a successively more accurate representation of the region, yielding
a more accurate representation of the curve surrounding the region.

where σ is the boundary of the entire region and n is the corresponding
outward unit normal, and

lim
∆x→0,∆y→0

[∑
i

(
∂P

∂x
+

∂Q

∂y

)
∆τi

]
=

∫∫ (
∂P

∂x
+

∂Q

∂y

)
dτ . (6.22)

Thus, ∫
V · n dσ =

∫∫ (
∂P

∂x
+

∂Q

∂y

)
dτ , (6.23)

which is the divergence theorem in two dimensions. The same arguments apply
in three dimensions, and we can write this in a more compact form by using
the notation in Eq. (6.11):

∫
V · n dσ =

∫∫
∇ · V dτ , (6.24)

where σ is the curve bounding the area τ in two dimensions, and

∫∫
V · n dσ =

∫∫∫
∇ · V dτ , (6.25)



The Divergence and the Divergence Theorem 91

where σ is the surface bounding the volume τ in three dimensions. Note that
these equations have the structure of the Fundamental Theorem of Calculus
in Eqs. (1.25) and (1.26), which we combine as

F (b) − F (a) =
∫ b

a

dF

dx
dx . (6.26)

The left-hand sides of all these equations involves the integral of the derivative
of a function over the interior of a region, while the right-hand sides involve
the evaluation of the function over the boundary of that region.

Example. We will verify the di-

x

y

x

y

Figure 6.7: Plot of V = x i + y j in
the region 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1
of the x-y plane, shown shaded with
emboldened boundaries.

vergence theorem Eq. (6.24) for the
vector field

V = x i + y j (6.27)

over the volume in the region of the
x-y plane given by 0 ≤ x ≤ 1 and
0 ≤ y ≤ 1, as depicted in Fig. 6.7.
The divergence of V was calculated
in the Example in the preceding sec-
tion, ∇ ·V = 2, so the right-hand side
of the divergence can be evaluated im-
mediately:∫∫

∇ · V dτ = 2
∫ 1

0
dx

∫ 1

0
dy = 2 .

(6.28)
The left-hand side is evaluated in an analogous manner to that used to obtain
Eq . (6.8). Beginning with the segment along the x-axis and proceeding in a
counterclockwise direction, we have

V · n = (x i + y j) · (−j) = −y (6.29)

V · n = (x i + y j) · i = x (6.30)

V · n = (x i + y j) · j = y (6.31)

V · n = (x i + y j) · (−i) = −x (6.32)
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Along these four segments, we have, respectively, that y = 0, x = 1, y = 1,
and x = 0. Thus, only the expressions in Eqs. (6.30) and (6.31) have nonzero
contributions. This can be understood from Fig. 6.7 because V is seen to
have only components parallel to the boundaries that lie along the x- and
y-axes. Hence, there is no flux of V across these boundaries. We thereby
obtain ∫

V · n dσ =
∫ 1

0
x

∣∣∣∣
x=1

dy +
∫ 1

0
y
∣∣∣∣
y=1

dx = 1 + 1 = 2 , (6.33)

which agrees with Eq. (6.28).

Example. We now turn our at-
1
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Figure 6.8: The vector field in
Eq. (6.34) evaluated at the surface of
the unit sphere.

tention to the divergence theorem in
three dimensions in Eq. (6.25). Con-
sider the flux of vector field

V = y i − x j + z k , (6.34)

through the surface of the unit sphere,
x2 + y2 + z2 = 1 (Fig. 6.8). To evalu-
ate the right-hand side of Eq. (6.25),
we first calculate the divergence of V .
Using Eq. (6.11) with P = y, Q = −x,
and R = z, we obtain

∇ · V =
∂y

∂x
− ∂x

∂y
+

∂z

∂z

= 0 + 0 + 1 = 1 . (6.35)

The integral of this quantity over the
volume of the sphere can be carried
out either by inspection or explicitly in spherical polar coordinates:∫∫∫

∇ · V dτ =
∫ 1

0
r2 dr

∫ 2π

0
dφ

∫ π

0
sin θ dθ =

1

3
× 2π × 2 =

4

3
π , (6.36)

which is just the volume of the unit sphere.
The evaluation of the left-hand side of Eq. (6.25) requires determining

the “dot” product V · n over the surface of the unit sphere. The outward
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unit normal is obtained from the gradient

∇(x2 + y2 + z2) = 2x i + 2y j + 2z k , (6.37)

The length of this vector is

|∇(x2 + y2 + z2)| =
√

4x2 + 4y2 + 4z2 = 2
√

x2 + y2 + z2 = 2 (6.38)

on the surface of the unit sphere (where x2 + y2 + z2 = 1). Hence,

n = x i + y j + z k , (6.39)

so

V · n = (y i − x j + z k) · (x i + y j + z k) = xy − xy + z2 = z2 . (6.40)

The integral of this quantity over the surface of the unit sphere is carried out
in spherical polar coordinates, with z2 = cos2 θ:∫∫

V · n dσ =
∫ 2π

0
dφ︸ ︷︷ ︸

2π

∫ π

0
sin θ cos2 θ dθ︸ ︷︷ ︸

−1
3
cos3 θ

∣∣∣∣π
0

= 2
3

=
4

3
π , (6.41)

which agrees with Eq. (6.36).

6.3 Gauss’ Law

Gauss’ law is a special case of the divergence theorem that has several impor-
tant applications in physics. We begin by considering the divergence theorem
for the particular case that

V = ∇Φ(r) , (6.42)

i.e. V is the gradient of a scalar function Φ and r = (x2 + y2 + z2)1/2 is
the usual radial variable that measures the distance of the point (x, y, z) to
the origin. We will evaluate the left-hand side of Eq. (6.25) for a spherical
surface of radius R, which means that we need to determine V and n over
this surface. The equation of this surface is x2 + y2 + z2 = R2, so the
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outward unit normal is obtained by taking the gradient of this expression
and normalizing the resulting vector, as in the steps leading to Eq. (6.39):

n =
x

R
i +

y

R
j +

z

R
k . (6.43)

To calculate V , we use the chain rule to obtain

∇Φ(r) =
∂Φ

∂x
i +

∂Φ

∂y
j +

∂Φ

∂z
k

=
dΦ

dr

∂r

∂x
i +

dΦ

dr

∂r

∂y
j +

dΦ

dr

∂r

∂z
k

=
dΦ

dr

(
x

r
i +

y

r
j +

z

r
k

)
. (6.44)

On the surface of the sphere, r = R and this expression reduces to

∇Φ(r) =
dΦ

dr

∣∣∣∣
r=R

(
x

R
i +

y

R
j +

z

R
k

)
, (6.45)

so

V · n = ∇Φ(r) · n =
dΦ

dr

∣∣∣∣
r=R

(
x2 + y2 + z2

R2

)
=

dΦ

dr

∣∣∣∣
r=R

, (6.46)

which, since both V and n are radial vector fields, is a constant on the surface
of the sphere. Thus, integrating this quantity (which is a constant) over the
surface of the sphere of radius R yields∫∫

V · n dσ = 4πR2 dΦ

dr

∣∣∣∣
r=R

. (6.47)

We now observe that, if we specialize our choice of Φ to Φ(r) = A/r, where
A is any constant, then ∫∫

V · n dσ = −4πA , (6.48)

i.e. independent of the radius of the sphere!
This result has several important consequences. Figure 6.9 shows a two-

dimensional depiction that we will use in the following discussion. Figure
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(a) (b) (c)

Figure 6.9: Schematic depiction in two dimensions of Gauss’ law for surfaces that
enclose the origin, with (a) a “spherical surface”, (b) a deformed spherical surface,
which leaves the value of Eq. (6.48) unaffected, and (c) a general surface that can
be represented by the construction in (b).

6.9(a) shows a “sphere” of any radius. Since Eq. (6.48) is independent of
the radius, the value of this integral is unaffected by any deformation of
this sphere as long as the resulting surface contains the origin. One such
deformation is shown in Fig. 6.9. There is no flux through the radial planes
because the vector field is radial, so only the spherical portions contribute
to the flux. Any section within a fixed subtended angle can be moved to
any radius with no effect on the flux through that section. Hence, since any
surface can be decomposed into such radial and spherical sections, the result
in Eq. (6.48) will be obtained for any surface that enclosed the origin, as
shown in Fig. 6.9(c).

An altogether different result is obtained if the surface does not contain
the origin. This situation is depicted in Fig. 6.10. The surface in Fig. 6.10(a)
is composed of spherical sections. Since this surface surrounds a region that
excludes the origin, the flux into the volume exactly cancels the flux out of the
volume because every spherical section which admits flux has a corresponding
region that expels the same amount of flux. Hence, the flux integral over
such a surface vanishes! Figure 6.10(b) shows a smooth surface that can be
decomposed into sections as in Fig. 6.10(b). Figures 6.9 and 6.10 summarize
the essence of Gauss’ law.

One of the most far-reaching applications of Gauss’ law is to electrostatics,
where the function Φ(r) represents the electrostatic potential of a charge q
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(a) (b)

Figure 6.10: Schematic depiction in two dimensions of Gauss’ law for surfaces that
do not enclose the origin, with (a) a deformed surface with “spherical” sections,
(b) a general surface that can be represented by the construction in (a).

located at the origin:

Φ(r) =
q

4πε0r
, (6.49)

where ε0 is the permittivity of free space. The associated electric field E is
then given by

E = −∇Φ =
q

4πε0r2
, (6.50)

and Gauss’ law reads

∫∫∫
∇ · E dτ =

∫∫
E · n dσ =

q

ε0

. (6.51)

if the surface σ encloses the origin. More generally, the right-hand side is
equal to the total charge enclosed by σ, i.e. the total charge contained within
the volume τ . Gauss’ law results from the divergence theorem applied to
Coulomb’s law and leads to one of the four Maxwell equations – the equations
that govern the behavior of all electromagnetic phenomena.
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6.4 Summary

This chapter has introduced the divergence of a vector field V = V =
P (x, y, z) i + Q(x, y, z) j + R(x, y, z) k:

∇ · V =
∂P

∂x
+

∂Q

∂y
+

∂R

∂z
. (6.52)

The divergence represents the flux density of the vector field and, because of
the derivative operation, has an associated Fundamental Theorem of Calculus
called the divergence theorem:∫∫

V · n dσ =
∫∫∫

∇ · V dτ , (6.53)

for a surface σ surrounding a volume τ .
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