
Chapter 4

Line Integrals

For a function f of a single variable, the integral of f over an interval is
uniquely determined once the limits of integration are specified. Extending
this construction to the integration of a function f of two or more variables
along a path in space connecting specified initial and final points (the limits
of integration) leads to entirely new mathematical issues. Foremost among
these is that the value of such an integral – called a line integral – generally
depends not just on the limits of integration, but on the path that connects
these points along which the integration of f is carried out. Thus, the infor-
mation required to perform a line integral of a given function is comprised
of the initial and final points and the path connecting them. In this respect
line integrals represent a significant conceptual departure from double and
triple integrals.

In this chapter, we will first motivate the mathematical structure of a
large class of line integrals, using the calculation of work in classical me-
chanics as a motivation, and work through several examples to demonstrate
through explicit calculations that the value of a line integral can depend on
the path connecting two points. We will then examine some general proper-
ties of line integrals, determine the criterion for the value of a line integral
to be independent of the integration path between the limits of integration.
Path-dependent and path-independent line integrals each have important ap-
plications in several areas of physics, including mechanics, electromagnetic
theory, and thermodynamics, which we mention at various places in this
chapter.
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4.1 Work in Classical Mechanics

A standard calculation in classical

r

F

Figure 4.1: A force F acting at an
angle θ along a displacement r.

mechanics is the work W done by a
force F along a path between two points
a and b. If the force has a constant
magnitude and direction and acts at an
angle θ along a path of length r, as
shown in the figure at right, the work
W done by the force is W = F ·r. Sim-
ilarly, if F acts only over an infinitesi-
mal distance dr, the corresponding work dW done is

dW = F ·dr . (4.1)

Suppose now that the force is a function of position. We consider this
situation in one dimension first: F = F (x). The calculation of the work
between two points x = a and x = b proceeds according to the construction
in Fig. 4.2. The interval (a, b) is first divided into N subintervals of length
∆x = (b − a)/N . The force acting within each of these subintervals is taken

x

F
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x

F
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Figure 4.2: (Left panel) Construction used to calculate the work done from x = a
to x = b by a position-dependent force. The shaded area corresponds to the
work calculated by regarding the force as constant over each subinterval. (Right
panel) The corresponding calculation for infinitesimal subintervals, which is seen
to represent the area bounded by F , the x-axis, and the lines x = a and x = b.
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to be the constant value at the left endpoint of that interval. Thus, we obtain

F (a)∆x + F (a + ∆x)∆x +·s + F (b − ∆x)∆x . (4.2)

as an approximation of the work done over the interval. As ∆x → 0, this
approximation becomes increasingly accurate and the work done approaches
the shaded region in the right panel of the figure. Referring to Sec. 1.2, the
procedure depicted in Fig. 4.2 is the same as that used for the Riemann sum
construction of the integral of a function, so we conclude that

W =
∫ b

a
F dx . (4.3)

Similar considerations apply for paths in two and three dimensions. In
this chapter, we will consider the two-dimensional case. A force F in two
dimensions is a vector field:

F (x, y) = P (x, y) i + Q(x, y) j , (4.4)

where P and Q are functions of x and

i

f

Figure 4.3: A path in a vector field
between an initial point i and the final
point f .

y and i. This expression indicates that
every point (x, y) is assigned a vector
F whose x-component is given by P i
and whose y-component is Q j. The
path along which F acts is a curve P in
the x-y plane between an initial point i
and a final point f , as shown in Fig. 4.3.
The work done along this path is calcu-
lated as in Eq. (4.1) by first considering
the incremental work dW done by the
force along a distance dr: dW = F ·dr,
where dr is the incremental distance
along the path. Then, with the posi-
tion vector given by

r = x i + y j , (4.5)

we have that the incremental change along the path is

dr = dx i + dy j , (4.6)
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so the work done along P is

W =
∫
P

F ·dr

=
∫
P

[P (x, y) i + Q(x, y) j]·(dx i + dy j)

=
∫
P

[P (x, y) dx + Q(x, y) dy] . (4.7)

This is an example of a line integral.
In addition to this example from classical mechanics, line integrals appear

in thermodynamics and in electricity and magnetism. In thermodynamics,
P represents a process between initial and final values of thermodynamic
variables (e.g. pressure, temperature, volume). The line integral of such
variables yields quantities such as heat flow and the work done during the
process. In electricity and magnetism, P is a path in space, and line integrals
represent quantities such as the electromotive force. In all of these cases the
mathematical form of a line integral is

∫
P

[f(x, y) dx + g(x, y) dy] , (4.8)

where f and g are any functions that can be integrated and P is the path
connecting the initial and final points.

As we stressed in the introduction, specifying the integration path P is
as important as specifying the initial and final points. The path provides
a functional relationship between x and y and allows the integrals to be
evaluated; otherwise the variable y in the term f(x, y) dx and the variable
x in the term g(x, y)) dy appear superfluous. Additionally, the value of the
line integral may depend explicitly on the path, so specifying only the initial
and final points does not necessarily sufficient to obtain a unique value. The
following example illustrates these ideas.

Example. Consider the line integral∫
P

xy dx , (4.9)
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which is of the general form in Eq. (4.8) with f = xy and g = 0. In the
context of the calculation of work, this corresponds to a force F (x, y) = xy i.

We will evaluate this integral over

0 0.2 0.4 0.6 0.8 1
x

0

0.2

0.4

0.6

0.8

1

y

P2

P3

P1

Figure 4.4: The three paths, labelled
P1, P2, and P3 between (0, 0) and (1, 1)
used for evaluating the line integral in
Eq.(4.9).

the three paths shown in Fig. 4.4, each
of which have their initial point at the
origin (0, 0) and their final point at
(1, 1).

We first consider P1. This path
is composed of two straight segments:
(0, 0) → (1, 0) and (1, 0) → (1, 1).
The first segment lies along the x-axis,
so we have that

y = 0 , 0 ≤ x ≤ 1 . (4.10)

Hence, since y = 0, the integrand van-
ishes, so the contribution from seg-
ment also vanishes. The second seg-
ment is parallel to the y-axis, so

x = 1 , dx = 0 , 0 ≤ y ≤ 1 . (4.11)

Since dx = 0, the contribution along this segment also vanishes. Therefore,
the integral along P1 vanishes: ∫

P1

xy dx = 0 . (4.12)

The path P2 connects (0, 0) to (1, 1) with the straight line y = x. Thus,
along this path, the integrand can be expressed entirely as a function of
x: xy = x2, with 0 ≤ x ≤ 1. The line integral is thereby evaluated as∫

P2

xy dx =
∫ 1

0
x2 dx = 1

3
x3

∣∣∣∣1
0

= 1
3
. (4.13)

Finally, the path P3 connects (0, 0) to (1, 1) with the parabola y = x2.
Along this path, the integrand can be written as xy = x3, with 0 ≤ x ≤ 1,
and the line integral becomes∫

P3

xy dx =
∫ 1

0
x3 dx = 1

4
x4

∣∣∣∣1
0

= 1
4
. (4.14)
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We have thus obtained three different values for the line integral in
Eq. (4.9) along the three paths shown in Fig. 4.4. This result can be un-
derstood by interpreting this integral as the work done by the force F = xy i
over the three paths: ∫

Pi

F ·dr =
∫
Pi

xy dx , (4.15)

for i = 1, 2, 3. This vector field is
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Figure 4.5: The vector field F = xy i
and the paths P1, P2, and P3 shown in
Fig. 4.4 used for the evaluation of the
line integral in Eq. (4.9).

shown in Fig. 4.5 superimposed on the
paths P1, P2, and P3. We can see im-
mediately from this diagram that the
work done along P1 must vanish be-
cause F vanishes along the x-axis (the
first segment of P1), and acts in the
normal direction to the second seg-
ment of this path. Alternatively, the
line integrals along P2 and P3 are both
necessarily positive because the pro-
jection of F onto the path has a com-
ponent along the direction of the path,
producing positive work.

This example illustrates two fun-
damental points about line integrals.
(i) The value of a line integral may depend on the path over which it is evalu-
ated. There are physical manifestations of this property that have important
consequences in mechanics, thermodynamics, and electricity and magnetism.
(ii) The path between given initial and final points establishes a relationship
between the independent variables. Once this information is incorporated
into the line integral, the evaluation reduces to that of an ordinary integral
(Sec. 1.2).

Example. Consider the line integral∫
P
(xy2 dx + x2y dy) (4.16)

evaluated along the three paths in Fig. 4.4. Along the first segment of P1,
y = 0, and therefore dy = 0, so there is no contribution from either term in
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the integral. Along the second segment x = 1, dx = 0, and 0 ≤ y ≤ 1. Thus,
only the second term in the integral makes a contribution to the integral,
and we obtain ∫

P1

(xy2 dx + x2y dy) =
∫ 1

0
y dy = 1

2
y2

∣∣∣∣1
0

= 1
2
. (4.17)

Along P2, y = x, so dy = dx. Thus, both terms in the integrand can be
written in terms of either x or y alone:

∫
P2

(xy2 dx + x2y dy) = 2
∫ 1

0
x3 dx = 2 × 1

4
x4

∣∣∣∣1
0

= 1
2
, (4.18)

which is the same value obtained in Eq. (4.17).
Finally, along P3, y = x2, so dy = 2x dx. We can express the integrand

in terms of x alone to obtain∫
P3

(xy2 dx + x2y dy) =
∫ 1

0
(x5 dx + 2x5 dx)

= 3
∫ 1

0
x5 dx = 3 × 1

6
x6

∣∣∣∣1
0

= 1
2
, (4.19)

which is the same as that obtained for the other two paths. A natural
question arises: Is this a coincidence, or does this integral always have the
same value when evaluated over different paths between fixed initial and final
points? The results we have obtained in this example are certainly suggestive,
but to address this question in a mathematically concise framework, we must
derive some additional properties of line integrals. This is the subject of the
next two sections.

4.2 Line Integrals over Closed Curves

An important class of line integrals is that for which the path of integration
forms a simple closed curve, i.e. a path that returns to the initial point but
does not cross its path. Such integrals find many applications in thermo-
dynamics, where they are called “cycles”, and in electricity and magnetism,
where they form the mathematical expression of Ampère’s law, and are re-
ferred to as “loop integrals”. In this section, we will re-express the question
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of the path-dependence of a line integral in terms of the value of that integral
around a closed curve. We first determine the effect that reversing the sense
of the integration path has on the value of a line integral.

Consider a line integral over a path
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f
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Figure 4.6: (a) The path P between
points i and f , and (b) the reverse
path −P (b).

between an initial point i and a final
point f , as shown in Fig. 4.6(a):

∫
P
(f dx + g dy) . (4.20)

Suppose that this path is reversed, so
that the new initial point is f and the
new final point is i, as shown Fig. 4.6(b).
We signify this path by −P and write
the corresponding line integral as∫

−P
(f dx + g dy) . (4.21)

The relationship between the values of
these two line integrals is straightfor-
ward to understand. As the examples
in the preceding section show, the eval-
uation of a line integral always reduces
to an ordinary integral. Thus, revers-
ing the integration path in a line inte-
gral has the effect of interchanging the
upper and lower limits of integration.
According to the Fundamental Theo-
rem of Calculus, this changes the sign
of the integral [Eq. (1.30)]. Thus, the line integrals in Eqs. (4.20) and (4.21)
have the same absolute value, but opposite signs:

∫
−P

(f dx + g dy) = −
∫
P
(f dx + g dy) . (4.22)
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Consider now a line integral over a closed curve C (Fig. 4.7). Such inte-
grals, often called “loop integrals”, have a special notation to indicate that
the integration path is a closed curve:∮

C
(f dx + g dy) . (4.23)

Choose any two distinct points A and

x

y

A

B

P2

P1

Figure 4.7: A closed curve C in the
x-y plane. P1 is a path between any
two points A and B on C and P2 is
the path from B to A that completes
the loop. The closed curve is the sum
of these two paths: C = P1 + P2.

B on C and denote by P1 the path on
C from A to B and by P2 the path that
returns B to A along C. The integral
over C can be expressed as sum of line
integrals over P1 and P2:∮

C
(f dx + g dy) =

∫
P1

(f dx + g dy)

+
∫
P2

(f dx + g dy) .

Suppose that the value of the line inte-
gral in Eq. (4.20) is independent of the
path P for any initial and final points.
The closed curve C in Fig. 4.7 defines
two paths from A to B: the path P1

and the reverse of the path P2. Path-
independence requires that the line in-
tegrals over P1 and −P2 are equal:∫

P1

(f dx + g dy) =
∫
−P2

(f dx + g dy) . (4.24)

By invoking Eq. (4.22), we can write this equation as∫
P1

(f dx + g dy) −
∫
−P2

(f dx + g dy)

=
∫
P1

(f dx + g dy) +
∫
P2

(f dx + g dy)

=
∮
C
(f dx + g dy) = 0 . (4.25)
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This shows that, if the value of a line integral is independent of the path
between any initial and final points, the loop integral vanishes for any closed
curve.

The converse of this statement is also true. If a loop integral vanishes
for any closed curve C, then we can choose any two points A and B on C as
initial and final points of line integrals along the corresponding paths P1 and
P2. Then, by reversing the steps leading to Eq. (4.25), we find that

∫
P1

(f dx + g dy) =
∫
−P2

(f dx + g dy) , (4.26)

which implies path independence. Thus, we have shown that the path in-
dependence of a line integral is both necessary [Eq. (4.26)] and sufficient
[Eq. (4.25)] for the loop integral to vanish over any closed curve. In other
words, these two properties are equivalent:

A line integral ∫
P
(f dx + g dy)

is independent of the path P between any two points i and f if and only if∮
C
(f dx + g dy) = 0

for any closed curve C.

This result provides an alternative statement of the fact that line integrals fall
into two classes: (i) path-dependent and, therefore, typically non-vanishing
values over closed curves, and (ii) path-independent and vanishing values over
closed curves. Both types of line integral are important in applications to
physics and understanding the physical circumstances that lead to one type
of integral or another is a central theme in several disciplines. We conclude
this section with two examples.
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Example. Consider the loop integral∮
C
y dx , (4.27)

where C is a circle of radius r centered

1
x

1

y

r

Figure 4.8: The circle of radius a cen-
tered at (1, 1), showing the definition
of φ for carrying out a loop integral
over this curve.

at (1, 1), as shown in Fig. 4.8. We rep-
resent the circle as follows:

x = 1 − r cos φ ,
(4.28)

y = 1 + r sin φ ,

where 0 ≤ φ < 2π. This parametriza-
tion sweeps through the circle in a clock-
wise direction beginning at (1 − a, 1).
The integral in Eq. (4.27) can be ex-
pressed as an integral over φ by using
Eq. (4.28) to transform the integrand,
the integration element, and the limits
of integration. The integrand y is given
by the second of Eqs. (4.28), an appli-
cation of the chain rule to x(φ) yields

dx = a sin φ dφ , (4.29)

and the limits of integration are 0 ≤ φ < 2π. The original integral thereby
becomes ∮

y dx =
∫ 2π

0
(1 + r sin φ)r sin φ dφ

= r
∫ 2π

0
sin φ dφ︸ ︷︷ ︸
= 0

+r2
∫ 2π

0
sin2 φ dφ︸ ︷︷ ︸
= π

= πr2 . (4.30)

This is readily identified as the area of the circle enclosed by C.
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Figure 4.9: The evaluation of the loop integral in Eq. (4.27) around an arbitrary
closed curve C, showing (a) the separation of C into upper and lower paths P1

and P2, (b) and (c) the evaluation of the integral along these paths, and (d) the
cumulative effect of the loop integral.

This result can be generalized to any closed curve in the x-y plane by
following the steps shown in Fig. 4.9. We first identify the points A = (xA, yA)
and B = (xB, yB) that allow C to be written as the sum of upper and lower
paths P2 and P2, which can be represented as functions y1(x) and y2(x),
respectively. The integral along P1 is

∫
P1

y dx =
∫ xB

xA

y1(x) dx . (4.31)

This is an ordinary integral whose value is represented by area bounded by
y1(x), the x-axis, and x = xA and x = xB, as shown in Fig. 4.9(a). The loop
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is completed by integrating y2(x) from xB to xA. The integral∫ xB

xA

y2(x) dx (4.32)

is represented by the area shown in Fig. 4.9(c). But the integral we need to
complete C has the upper and lower limits interchanged, so its value corre-
sponds to the negative of this quantity. Hence, the loop integral is calculated
as ∮

C
y dx =

∫ xB

xA

y1(x) dx −
∫ xB

xA

y2(x) dx , (4.33)

which is represented in Fig. 4.9(d). The integral over y2(x) cancels the contri-
bution from the integral over y1(x) that represents the area below P2, leaving
only the area enclosed by C. We have thereby shown that∮

C
y dx = A , (4.34)

where A is the area enclosed by C.

We conclude this section with an

x

y

( 1, 1) (1, 1)

(1,1)( 1,1)

Figure 4.10: The closed contour for
the integral in Eq. (4.35).

example of a loop integral that does
vanish.

Example. Consider the integral∮
C
(xy2 dx + x2y dy) , (4.35)

where C is the closed curve in Fig. 4.10.
The integrand is the same as that in the
second example in Sec. 4.1. The closed
curve is composed of four straight seg-
ments, so we will evaluate the loop inte-
gral by considering each segment sepa-
rately. Beginning at (−1,−1), the seg-
ments are characterized as follows:

(−1,−1) → (−1, 1) : x = −1 dx = 0 −1 ≤ y ≤ 1
(−1, 1) → (1, 1) : y = 1 dy = 0 −1 ≤ x ≤ 1

(1, 1) → (1,−1) : x = 1 dx = 0 −1 ≤ y ≤ 1
(1,−1) → (−1,−1) : y = −1 dy = 0 −1 ≤ x ≤ 1
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If dx = 0 the first term in Eq. (4.35) makes no contribution, while if dy = 0,
the second term makes no contribution. The integral can therefore be written
as (note the upper and lower limits of each integral!)∫ 1

−1
y dy +

∫ 1

−1
x dx +

∫ −1

1
y dy +

∫ −1

1
x dx = 0 , (4.36)

because of the pair-wise cancellation of the integrals.

4.3 Exact and Inexact Differentials

Although the results of the preceding section allow us to re-express the path-
independence of a line integral in terms of a loop integral, we are no closer
to determining a priori whether or not a given line integral is independent of
path between given initial and final points. In this section, we will derive a
condition that allows us to address this question without having to perform
any integration whatsoever.

Consider the line integral ∫
P
(f dx + g dy) (4.37)

over a path P between an initial point (xi, yi) and a final point (xf , yf ). The
path establishes a relation between x and y that we represent as y(x). This
enables us to write the line integral as an integral over x only by following
the procedure in Sec. 1.4. We have∫

P
f(x, y) dx =

∫ xf

xi

f [x, y(x)] dx , (4.38)

∫
P

g(x, y) dy =
∫ xf

xi

g[x, y(x))]
dy

dx
dx . (4.39)

Thus,

∫
P
(f dx + g dy) =

∫ xf

xi

{
f [x, y(x)] + g[x, y(x)]

dy

dx

}
dx . (4.40)

The right-hand side of this equation is an ordinary integral over xi ≤ x ≤
xf . Accordingly, if the line integral is path-independent, we can use the
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Fundamental Theorem of Calculus to write∫ xf

xi

{
f [x, y(x)] + g[x, y(x)]

dy

dx

}
dx = F (xf ) − F (xi) , (4.41)

where
dF

dx
= f [x, y(x)] + g[x, y(x)]

dy

dx
. (4.42)

By writing F as F [x, y(x)], we also have

dF

dx
=

∂F

∂x
+

∂F

∂y

dy

dx
, (4.43)

from which we identify

∂F

∂x
= f ,

∂F

∂y
= g . (4.44)

The quantity F is called the potential. On account of Eq. (4.44) we can write
the differential of F as

dF =
∂F

∂x
dx +

∂F

∂y
y = f dx + g dy , (4.45)

in which case the quantity on the right-hand side is independent of the path.
This is called an exact differential. Otherwise, the quantity f dx+g dy is called
an inexact differential and the corresponding line integral is path-dependent.
Hence, a line integral of an exact differential can be represented as∫

P
(f dx + g dy) =

∫
P

dF , (4.46)

in which case we have that∫
P
(f dx + g dy) = F [xf , y(xf )] − F [xi, y(xi)]

= F (xf , yf ) − F (xi, yi) , (4.47)

In terms of our original formulation in Sec. 4.1, this equation states the work
done between and initial point i and a final point f is equal to the change in
the potential F .
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Equation (4.44) provides a method of testing for the exactness of a dif-
ferential. By differentiating the first of these equations with respect to y,

∂

∂y

(
∂F

∂x

)
=

∂2F

∂y∂x
=

∂f

∂y
, (4.48)

the second with respect to x,

∂

∂x

(
∂F

∂y

)
=

∂2F

∂x∂y
=

∂g

∂x
, (4.49)

and equating the mixed second partial derivatives of F : Fyx = Fxy, we obtain

∂f

∂y
=

∂g

∂x
. (4.50)

The discussion leading to this equation shows that it is a necessary condi-
tion for a differential to be exact. The procedure described in Problem 2,
Problem Set 2 shows that this is also a sufficient condition for exactness,
thus demonstrating the equivalence between Eq. (4.50) and the exactness of
a differential.

Example. Consider the line integral∫
P

y dx , (4.51)

which was discussed in an earlier Example in this section. In the notation of
Eq. (4.8), f = y and g = 0. Thus,

∂f

∂y
= 1 ,

∂g

∂x
= 0 . (4.52)

Since these two partial derivatives are unequal, we conclude from Eq. (4.50)
that y dx is an inexact differential, so the line integral in Eq. (4.51) is path-
dependent. This result is to be expected in view of Eq. (4.34).

As a second example, we consider the line integral∫
P
(xy2 dx + x2y dy) . (4.53)
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This integral has been discussed in Secs. 4.1 and 4.2. In the notation of
Eq. (4.8), f = xy2 and g = x2y, and we find

∂f

∂y
= 2xy ,

∂g

∂x
= 2xy . (4.54)

The equality of these partial derivatives means that xy2 dx + x2y dy is an
exact differential, so the line integral in Eq. (4.53) is path-dependent. This
conclusion confirms our expectations based on the results already obtained
for this line integral.

The exactness of this differential implies that there is an underlying po-
tential function F such that

∂F

∂x
= xy2 ,

∂F

∂y
= x2y . (4.55)

Integrating the first of these with respect to x yields

F (x, y) = 1
2
x2y2 + h(y) , (4.56)

where h(y) is an arbitrary function of y (analogous to constants of integration
obtained when integrating functions of one variable). Differentiating both
sides of this equation with respect to y,

∂F

∂y
= x2y + h′(y) , (4.57)

and requiring that this result be consistent with the second of equations
(4.55), necessitates setting h = constant, so h′(y) = 0. Thus,

F (x, y) = 1
2
x2y2 + constant . (4.58)

The constant term disappears upon integration:∫
P
(xy2 dx + x2y dy) = 1

2
(x2

fy
2
f − x2

i y
2
i ) . (4.59)



68 Line Integrals

4.4 Arc Length∗

A line integral with a mathematical structure different from that in Eq. (4.8)
is obtained by calculating the distance travelled by a particle moving along a
trajectory. The trajectory is described by a curve [x(t), y(t)], where t is the
time between an initial time ti and a final time tf . The distance travelled by
the particle in time dt, when x changes by dx and y changes by dy, is given
by the relation

ds2 = dx2 + dy2 , (4.60)

or,
ds = (dx2 + dy2)1/2 . (4.61)

Thus, the total distance S travelled by the particle, called the arc length of
the path, is

S =
∫ f

i
ds =

∫ f

i

√
dx2 + dy2 . (4.62)

The integrand on the right-hand side can be written in a more physically
suggestive form as

√
dx2 + dy2 = dt

⎡
⎣(

dx

dt

)2

+

(
dy

dt

)2
⎤
⎦1/2

= dt
√

v2
x + v2

y = v dt , (4.63)

where vx and vy are x and y components of the instantaneous speed v of the
particle. The arc length along the trajectory is can thereby be represented
as

S =
∫ tf

ti
v(t) dt . (4.64)

The general form of the arc length,

∫
P

√
dx2 + dy2 . (4.65)

is used to represent the distance along any curve P .

Example. We will illustrate the methodology of computing the arc
length by considering y = cosh x between x = 0 and x = a. For y = cosh x,
we have

dy = sinh x dx , (4.66)
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so the integrand in Eq. (4.65) becomes

√
dx2 + dy2 =

√
dx2 + sinh2 x dx = dx

√
1 + sinh2 = cosh x dx . (4.67)

Thus, ∫ √
dx2 + dy2 =

∫ a

0
cosh x dx = sinh x

∣∣∣∣a
0

= sinh a . (4.68)

4.5 Summary

We can summarize the main results we have obtained on line integrals by
noting that the following statements are equivalent in that any one implies
any other. If any one statement is false, all other are false as well.

1. f dx + g dy is an exact differential;

2.
∫
P
(f dx + g dy) is independent of the path P between fixed endpoints;

3.
∮
C
(f dx + g dy) = 0 for any closed curve C;

4.
∂f

∂y
=

∂g

∂x
;

5. There is a potential function F such that Fx = f and Fy = g, so
dF = f dx + g dy;

6.
∫
P
(f dx + g dy) = F (xf , yf ) − F (xi, yi) for any initial point (xi, yi) and

final point (xf , yf ).
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